King's College London

Research portal

Miss Alysha Chelliah

Research Student

Project Title: Modelling brain tumour evolution along the neuroimaging pathway using deep learning

Department

Supervised by

  • Federated learning enables big data for rare cancer boundary detection

    Pati, S., Baid, U., Edwards, B., Sheller, M., Wang, S., Reina, G. A., Foley, P., Gruzdev, A., Karkada, D., Davatzikos, C., Sako, C., Ghodasara, S., Bilello, M., Mohan, S., Vollmuth, P., Brugnara, G., Preetha, C. J., Sahm, F., Maier-Hein, K., Zenk, M., & 259 othersBendszus, M., Wick, W., Calabrese, E., Rudie, J., Villanueva-Meyer, J., Cha, S., Ingalhalikar, M., Jadhav, M., Pandey, U., Saini, J., Garrett, J., Larson, M., Jeraj, R., Currie, S., Frood, R., Fatania, K., Huang, R. Y., Chang, K., Quintero, C. B., Capellades, J., Puig, J., Trenkler, J., Pichler, J., Necker, G., Haunschmidt, A., Meckel, S., Shukla, G., Liem, S., Alexander, G. S., Lombardo, J., Palmer, J. D., Flanders, A. E., Dicker, A. P., Sair, H. I., Jones, C. K., Venkataraman, A., Jiang, M., So, T. Y., Chen, C., Heng, P. A., Dou, Q., Kozubek, M., Lux, F., Michálek, J., Matula, P., Keřkovský, M., Kopřivová, T., Dostál, M., Vybíhal, V., Vogelbaum, M. A., Mitchell, J. R., Farinhas, J., Maldjian, J. A., Yogananda, C. G. B., Pinho, M. C., Reddy, D., Holcomb, J., Wagner, B. C., Ellingson, B. M., Cloughesy, T. F., Raymond, C., Oughourlian, T., Hagiwara, A., Wang, C., To, M., Bhardwaj, S., Chong, C., Agzarian, M., Falcão, A. X., Martins, S. B., Teixeira, B. C. A., Sprenger, F., Menotti, D., Lucio, D. R., Lamontagne, P., Marcus, D., Wiestler, B., Kofler, F., Ezhov, I., Metz, M., Jain, R., Lee, M., Lui, Y. W., Mckinley, R., Slotboom, J., Radojewski, P., Meier, R., Wiest, R., Murcia, D., Fu, E., Haas, R., Thompson, J., Ormond, D. R., Badve, C., Sloan, A. E., Vadmal, V., Waite, K., Colen, R. R., Pei, L., Ak, M., Srinivasan, A., Bapuraj, J. R., Rao, A., Wang, N., Yoshiaki, O., Moritani, T., Turk, S., Lee, J., Prabhudesai, S., Morón, F., Mandel, J., Kamnitsas, K., Glocker, B., Dixon, L. V. M., Williams, M., Zampakis, P., Panagiotopoulos, V., Tsiganos, P., Alexiou, S., Haliassos, I., Zacharaki, E. I., Moustakas, K., Kalogeropoulou, C., Kardamakis, D. M., Choi, Y. S., Lee, S., Chang, J. H., Ahn, S. S., Luo, B., Poisson, L., Wen, N., Tiwari, P., Verma, R., Bareja, R., Yadav, I., Chen, J., Kumar, N., Smits, M., Van der voort, S. R., Alafandi, A., Incekara, F., Wijnenga, M. M. J., Kapsas, G., Gahrmann, R., Schouten, J. W., Dubbink, H. J., Vincent, A. J. P. E., Van den bent, M. J., French, P. J., Klein, S., Yuan, Y., Sharma, S., Tseng, T., Adabi, S., Niclou, S. P., Keunen, O., Hau, A., Vallières, M., Fortin, D., Lepage, M., Landman, B., Ramadass, K., Xu, K., Chotai, S., Chambless, L. B., Mistry, A., Thompson, R. C., Gusev, Y., Bhuvaneshwar, K., Sayah, A., Bencheqroun, C., Belouali, A., Madhavan, S., Booth, T. C., Chelliah, A., Modat, M., Shuaib, H., Dragos, C., Abayazeed, A., Kolodziej, K., Hill, M., Abbassy, A., Gamal, S., Mekhaimar, M., Qayati, M., Reyes, M., Park, J. E., Yun, J., Kim, H. S., Mahajan, A., Muzi, M., Benson, S., Beets-Tan, R. G. H., Teuwen, J., Herrera-Trujillo, A., Trujillo, M., Escobar, W., Abello, A., Bernal, J., Gómez, J., Choi, J., Baek, S., Kim, Y., Ismael, H., Allen, B., Buatti, J. M., Kotrotsou, A., Li, H., Weiss, T., Weller, M., Bink, A., Pouymayou, B., Shaykh, H. F., Saltz, J., Prasanna, P., Shrestha, S., Mani, K. M., Payne, D., Kurc, T., Pelaez, E., Franco-Maldonado, H., Loayza, F., Quevedo, S., Guevara, P., Torche, E., Mendoza, C., Vera, F., Ríos, E., López, E., Velastin, S. A., Ogbole, G., Soneye, M., Oyekunle, D., Odafe-Oyibotha, O., Osobu, B., Shu’aibu, M., Dorcas, A., Dako, F., Simpson, A. L., Hamghalam, M., Peoples, J. J., Hu, R., Tran, A., Cutler, D., Moraes, F. Y., Boss, M. A., Gimpel, J., Veettil, D. K., Schmidt, K., Bialecki, B., Marella, S., Price, C., Cimino, L., Apgar, C., Shah, P., Menze, B., Barnholtz-Sloan, J. S., Martin, J. & Bakas, S., 5 Dec 2022, In: Nature Communications. 13, 1, 7346 .

    Research output: Contribution to journalArticlepeer-review

  • Machine Learning and Glioblastoma: Treatment Response Monitoring Biomarkers in 2021

    Booth, T., Akpinar, B., Roman, A., Shuaib, H., Luis, A., Chelliah, A., Al Busaidi, A., Mirchandani, A., Alparslan, B., Mansoor, N., Ashkan, K., Ourselin, S. & Modat, M., 31 Dec 2020, Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology: MLCN 2020, RNO-AI 2020. Lecture Notes in Computer Science, vol 12449.. Springer Nature Switzerland AG

    Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

View all (2) »

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454