TY - JOUR
T1 - Optimal wave fields for micromanipulation in complex scattering environments
AU - Horodynski, Michael
AU - Kühmayer, Matthias
AU - Brandstötter, Andre
AU - Pichler, Kevin
AU - Fyodorov, Yan V.
AU - Kuhl, Ulrich
AU - Rotter, Stefan
PY - 2019/11/18
Y1 - 2019/11/18
N2 - The manipulation of small objects with light has become an indispensable tool in many areas of research, ranging from physics to biology and medicine1–7. Here, we demonstrate how to implement micromanipulation at the optimal level of efficiency for arbitrarily shaped targets and inside complex environments such as disordered media. Our approach is to design wavefronts in the far field8–15 with optimal properties in the near field of the target to apply the strongest possible force, pressure or torque as well as to achieve the most efficient focus inside the target. This non-iterative technique only relies on a simple eigenvalue problem established from the system’s scattering matrix and its dependence on small shifts in specific target parameters (access to the near field of the target is not required). To illustrate this concept, we perform a proof-of-principle experiment in the microwave regime, fully confirming our predictions.
AB - The manipulation of small objects with light has become an indispensable tool in many areas of research, ranging from physics to biology and medicine1–7. Here, we demonstrate how to implement micromanipulation at the optimal level of efficiency for arbitrarily shaped targets and inside complex environments such as disordered media. Our approach is to design wavefronts in the far field8–15 with optimal properties in the near field of the target to apply the strongest possible force, pressure or torque as well as to achieve the most efficient focus inside the target. This non-iterative technique only relies on a simple eigenvalue problem established from the system’s scattering matrix and its dependence on small shifts in specific target parameters (access to the near field of the target is not required). To illustrate this concept, we perform a proof-of-principle experiment in the microwave regime, fully confirming our predictions.
UR - http://www.scopus.com/inward/record.url?scp=85075344639&partnerID=8YFLogxK
U2 - 10.1038/s41566-019-0550-z
DO - 10.1038/s41566-019-0550-z
M3 - Letter
AN - SCOPUS:85075344639
JO - Nature Photonics
JF - Nature Photonics
SN - 1749-4885
ER -
TY - CHAP
T1 - Random Matrix Theory of resonances
T2 - 2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
AU - Fyodorov, Yan V.
PY - 2016/9/19
Y1 - 2016/9/19
N2 - Scattering of electromagnetic waves in billiard-like systems has become a standard experimental tool of studying properties associated with Quantum Chaos. Random Matrix Theory (RMT) describing statistics of eigenfrequencies and associated eigenfunctions remains one of the pillars of theoretical understanding of quantum chaotic systems. In a scattering system coupling to continuum via antennae converts real eigenfrequencies into poles of the scattering matrix in the complex frequency plane and the associated eigenfunctions into decaying resonance states. Understanding statistics of these poles, as well as associated non-orthogonal resonance eigenfunctions within RMT approach is still possible, though much more challenging task.
AB - Scattering of electromagnetic waves in billiard-like systems has become a standard experimental tool of studying properties associated with Quantum Chaos. Random Matrix Theory (RMT) describing statistics of eigenfrequencies and associated eigenfunctions remains one of the pillars of theoretical understanding of quantum chaotic systems. In a scattering system coupling to continuum via antennae converts real eigenfrequencies into poles of the scattering matrix in the complex frequency plane and the associated eigenfunctions into decaying resonance states. Understanding statistics of these poles, as well as associated non-orthogonal resonance eigenfunctions within RMT approach is still possible, though much more challenging task.
UR - http://www.scopus.com/inward/record.url?scp=84992128522&partnerID=8YFLogxK
U2 - 10.1109/URSI-EMTS.2016.7571486
DO - 10.1109/URSI-EMTS.2016.7571486
M3 - Other chapter contribution
AN - SCOPUS:84992128522
SP - 666
EP - 669
BT - 2016 URSI International Symposium on Electromagnetic Theory, EMTS 2016
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 14 August 2016 through 18 August 2016
ER -