TY - JOUR
T1 - 2-Linoleoylglycerol Is a Partial Agonist of the Human Cannabinoid Type 1 Receptor that Can Suppress 2-Arachidonolyglycerol and Anandamide Activity
AU - Lu, Leanne
AU - Williams, Gareth
AU - Doherty, Patrick
PY - 2019/12/1
Y1 - 2019/12/1
N2 - Introduction: The cannabinoid type 1 (CB1) receptor and cannabinoid type 2 (CB2) receptor are widely expressed in the body and anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) are their best characterized endogenous ligands. The diacylglycerol lipases (diacylglycerol lipase alpha and diacylglycerol lipase beta) not only synthesize essentially all the 2-AG in the body but also generate other monoacylglycerols, including 2-linoleoylglycerol (2-LG). This lipid has been proposed to modulate endocannabinoid (eCB) signaling by protecting 2-AG from hydrolysis. However, more recently, 2-LG has been reported to be a CB1 antagonist. Methods: The effect of 2-LG on the human CB1 receptor activity was evaluated in vitro using a cell-based reporter assay that couples CB1 receptor activation to the expression of the β-lactamase enzyme. Receptor activity can then be measured by a β-lactamase enzymatic assay. Results: When benchmarked against 2-AG, AEA, and arachidonoyl-2′-chloroethylamide (a synthetic CB1 agonist), 2-LG functions as a partial agonist at the CB1 receptor. The 2-LG response was potentiated by JZL195, a drug that inhibits the hydrolysis of monoacylglycerols. The 2-LG response was also fully inhibited by the synthetic CB1 antagonist AM251 and by the natural plant derived antagonist cannabidiol. 2-LG did not potentiate, and only blunted, the activity of 2-AG and AEA. Conclusions: These results support the hypothesis that 2-LG is a partial agonist at the human CB1 receptor and capable of modulating the activity of the established eCBs.
AB - Introduction: The cannabinoid type 1 (CB1) receptor and cannabinoid type 2 (CB2) receptor are widely expressed in the body and anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) are their best characterized endogenous ligands. The diacylglycerol lipases (diacylglycerol lipase alpha and diacylglycerol lipase beta) not only synthesize essentially all the 2-AG in the body but also generate other monoacylglycerols, including 2-linoleoylglycerol (2-LG). This lipid has been proposed to modulate endocannabinoid (eCB) signaling by protecting 2-AG from hydrolysis. However, more recently, 2-LG has been reported to be a CB1 antagonist. Methods: The effect of 2-LG on the human CB1 receptor activity was evaluated in vitro using a cell-based reporter assay that couples CB1 receptor activation to the expression of the β-lactamase enzyme. Receptor activity can then be measured by a β-lactamase enzymatic assay. Results: When benchmarked against 2-AG, AEA, and arachidonoyl-2′-chloroethylamide (a synthetic CB1 agonist), 2-LG functions as a partial agonist at the CB1 receptor. The 2-LG response was potentiated by JZL195, a drug that inhibits the hydrolysis of monoacylglycerols. The 2-LG response was also fully inhibited by the synthetic CB1 antagonist AM251 and by the natural plant derived antagonist cannabidiol. 2-LG did not potentiate, and only blunted, the activity of 2-AG and AEA. Conclusions: These results support the hypothesis that 2-LG is a partial agonist at the human CB1 receptor and capable of modulating the activity of the established eCBs.
KW - 2-AG
KW - 2-LG
KW - ACEA
KW - anandamide
KW - cannabinoid receptors
KW - endocannabinoid system
UR - http://www.scopus.com/inward/record.url?scp=85077039366&partnerID=8YFLogxK
U2 - 10.1089/can.2019.0030
DO - 10.1089/can.2019.0030
M3 - Article
AN - SCOPUS:85077039366
SN - 2378-8763
VL - 4
SP - 231
EP - 239
JO - Cannabis and cannabinoid research
JF - Cannabis and cannabinoid research
IS - 4
ER -