Abstract
In this letter, a new 3-D electromagnetic position sensing method is proposed for localization of continuum medical robots. An electromagnet and magnetic sensors are placed outside the human body while only a piece of passive mu-metal with high magnetic permeability is attached to the robot moving inside the body, resulting in a wireless non-contacting position estimation system. The mu-metal gets easily magnetized by the electromagnet and thus exerts position-dependent influence on the external magnetic field, which is measured for position estimation using a particle filter. An alternating magnetic field from the electromagnet is used and hence disturbances from nearby ferromagnetic objects can be rejected. The 3-D position estimation system is evaluated on a flexible trans-esophageal robot for ultrasound imaging with motions of insertion and maneuver. Experiments show that the mean position estimation error is about 5 mm and the system is robust in the presence of magnetic disturbances from a ferromagnetic object. This new wireless and robust 3-D position estimation system is demonstrated to have the potential to localize a continuum medical robot, which can enable autonomous navigation of the robot.
Original language | English |
---|---|
Pages (from-to) | 2581-2588 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 7 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Apr 2022 |
Keywords
- 3D position estimation
- continuum medical robot
- electromagnetic tracking
- Electromagnets
- Estimation
- high-magnetic-permeability metal
- Magnetic resonance imaging
- Magnetic sensors
- Medical robotics
- Robot sensing systems
- Robots