King's College London

Research portal

3D whole-heart isotropic-resolution motion-compensated joint T1 /T2 mapping and water/fat imaging

Research output: Contribution to journalArticle

Original languageEnglish
JournalMagnetic Resonance in Medicine
DOIs
Publication statusE-pub ahead of print - 16 Jun 2020

Bibliographical note

© 2020 King's College London. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

King's Authors

Abstract

PURPOSE: To develop a free-breathing isotropic-resolution whole-heart joint T1 and T2 mapping sequence with Dixon-encoding that provides coregistered 3D T1 and T2 maps and complementary 3D anatomical water and fat images in a single ~9 min scan.

METHODS: Four interleaved dual-echo Dixon gradient echo volumes are acquired with a variable density Cartesian trajectory and different preparation pulses: 1) inversion recovery-preparation, 2) and 3) no preparations, and 4) T2 preparation. Image navigators are acquired to correct each echo for 2D translational respiratory motion; the 8 echoes are jointly reconstructed with a low-rank patch-based reconstruction. A water/fat separation algorithm is used to obtain water and fat images for each acquired volume. T1 and T2 maps are generated by matching the signal evolution of the water images to a simulated dictionary. Complementary bright-blood and fat volumes for anatomical visualization are obtained from the T2 -prepared dataset. The proposed sequence was tested in phantom experiments and 10 healthy subjects and compared to standard 2D MOLLI T1 mapping, 2D balance steady-state free precession T2 mapping, and 3D T2 -prepared Dixon coronary MR angiography.

RESULTS: High linear correlation was found between T1 and T2 quantification with the proposed approach and phantom spin echo measurements (y = 1.1 × -11.68, R2 = 0.98; and y = 0.85 × +5.7, R2 = 0.99). Mean myocardial values of T1 /T2 = 1116 ± 30.5 ms/45.1 ± 2.38 ms were measured in vivo. Biases of T1 /T2 = 101.8 ms/-0.77 ms were obtained compared to standard 2D techniques.

CONCLUSION: The proposed joint T1 /T2 sequence permitted the acquisition of motion-compensated isotropic-resolution 3D T1 and T2 maps and complementary coronary MR angiography and fat volumes, showing promising results in terms of T1 and T2 quantification and visualization of cardiac anatomy and pericardial fat.

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454