A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling

Perumal Nithiarasu, Pablo J Blanco, Lucas O Müller, Fredrik Eikeland Fossan, Leif Rune Hellevik, Wouter P Donders, Wouter Huberts, Marie Willemet, Jordi Alastruey

Research output: Contribution to journalArticlepeer-review

166 Citations (Scopus)

Abstract

Haemodynamical simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. Recent interest in verifying 1-D numerical schemes has led to the development of alternative experimental setups and the use of 3-D numerical models to acquire data not easily measured in vivo. In most studies to date, only one particular 1-D scheme is tested. In this paper we present a systematic comparison of six commonly used numerical schemes for 1-D blood flow modelling: discontinuous Galerkin (DCG), locally conservative Galerkin (LCG), Galerkin least-squares finite element method (FEM), finite volume method (FVM), finite difference MacCormack method (McC), and a simplified trapezium rule method (STM). Comparisons are made in a series of six benchmark test cases with an increasing degree of complexity. The accuracy of the numerical schemes is assessed by comparison against theoretical results, 3-D numerical data in compatible domains with distensible walls, or experimental data in a network of silicone tubes. Results show a good agreement among all numerical schemes and their ability to capture the main features of pressure, flow and area waveforms in large arteries. All the information used in this study, including the input data for all benchmark cases, experimental data where available, and numerical solutions for each scheme, is made publicly available online, providing a comprehensive reference data set to support the development of 1-D models and numerical schemes. 

Original languageEnglish
Article numbere02732
Number of pages33
JournalInternational Journal For Numerical Methods In Biomedical Engineering
Volume31
Issue number10
Early online date23 Jun 2015
DOIs
Publication statusPublished - Oct 2015

Fingerprint

Dive into the research topics of 'A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling'. Together they form a unique fingerprint.

Cite this