A Clinical Feasibility Study To Image Angiogenesis in Patients With Arteriovenous Malformations Using 68Ga-RGD PET/CT

Daphne Lobeek, Frédérique Bouwman, Erik Aarntzen, Janneke D M Molkenboer-Kuenen, Uta Flucke, Ha-Long Nguyen, Miikka Vikkula, Laurence Boon, Willemijn Klein, Peter Laverman, Wim Oyen, Otto Boerman, Samantha Yorna Armstrong Terry, Leo Schultzekool, Mark Rijpkema

Research output: Contribution to journalArticlepeer-review

150 Downloads (Pure)

Abstract

Objective: Arteriovenous Malformations (AVMs) have an inherent capacity to form new blood vessels resulting in excessive lesion growth and this is further triggered by the release of angiogenic factors. Gallium-68 (68Ga) labeled arginine-glycine-aspartate tripeptide sequence (RGD) positron emission tomography (PET)/computed tomography (CT) imaging (68Ga-RGD PET/CT) may provide insight in the angiogenic status and treatment response of AVMs. This clinical feasibility study demonstrates that 68Ga-RGD PET/CT imaging can be used to quantitatively assess angiogenesis in peripheral AVMs.
Methods: Ten patients with a peripheral AVM (mean age 40 years, four men, six women) and scheduled for endovascular embolization treatment, were prospectively included. All patients underwent 68Ga-RGD PET/CT imaging 60 min after injection (mean dose 207±5 MBq). Radiotracer uptake in AVM, blood-pool, and muscle activity were quantified as Standardized Uptake Values (SUVmax, SUVpeak) and descriptive analysis of the PET/CT images was performed. Furthermore, immunohistochemical analysis was performed on surgical biopsy material of peripheral AVMs to investigate the expression pattern of integrin αvβ3.
Results: 68Ga-RGD PET/CT imaging showed enhanced radiotracer uptake in all AVM lesions (mean SUVmax 3.0±1.1; mean SUVpeak 2.2±0.9). Lesion/blood and lesion/muscle ratios were 3.5±2.2 and 4.6±2.8, respectively. Radiotracer uptake in AVMs was significantly higher compared to uptake in background tissue (p=0.0006 and p=0.0014) for blood and muscle, respectively. Initial observations include identification of radiotracer uptake in (multifocal) AVM lesions and enhanced radiotracer uptake in intra-osseous components in those AVM cases affecting the bone integrity. Immunohistochemical analysis revealed cytoplasmatic and cell membranous integrin αvβ3 expression in endothelial cells of AVMs.
Conclusion: This feasibility study showed increased radiotracer uptake in AVM with angiogenic activity compared to surrounding tissue without angiogenic activity, suggesting that 68Ga-RGD PET/CT imaging can be used as a tool to quantitatively determine angiogenesis in AVM. Further studies will be conducted to explore the potential of 68Ga-RGD PET/CT imaging for guiding current treatment decisions and for assessment of response to anti-angiogenic treatment.
Original languageEnglish
JournalJournal of Nuclear Medicine
Publication statusAccepted/In press - 8 Jul 2019

Fingerprint

Dive into the research topics of 'A Clinical Feasibility Study To Image Angiogenesis in Patients With Arteriovenous Malformations Using 68Ga-RGD PET/CT'. Together they form a unique fingerprint.

Cite this