TY - JOUR
T1 - A histone acetylome-wide association study of Alzheimer’s disease identifies disease-associated H3K27ac differences in the entorhinal cortex
AU - Marzi, Sarah J.
AU - Leung, Szi Kay
AU - Ribarska, Teodora
AU - Hannon, Eilis
AU - Smith, Adam R.
AU - Pishva, Ehsan
AU - Poschmann, Jeremie
AU - Moore, Karen
AU - Troakes, Claire
AU - Al-Sarraj, Safa
AU - Beck, Stephan
AU - Newman, Stuart
AU - Lunnon, Katie
AU - Schalkwyk, Leonard C.
AU - Mill, Jonathan
PY - 2018/11/1
Y1 - 2018/11/1
N2 - We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer’s disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease.
AB - We quantified genome-wide patterns of lysine H3K27 acetylation (H3K27ac) in entorhinal cortex samples from Alzheimer’s disease (AD) cases and matched controls using chromatin immunoprecipitation and highly parallel sequencing. We observed widespread acetylomic variation associated with AD neuropathology, identifying 4,162 differential peaks (false discovery rate < 0.05) between AD cases and controls. Differentially acetylated peaks were enriched in disease-related biological pathways and included regions annotated to genes involved in the progression of amyloid-β and tau pathology (for example, APP, PSEN1, PSEN2, and MAPT), as well as regions containing variants associated with sporadic late-onset AD. Partitioned heritability analysis highlighted a highly significant enrichment of AD risk variants in entorhinal cortex H3K27ac peak regions. AD-associated variable H3K27ac was associated with transcriptional variation at proximal genes including CR1, GPR22, KMO, PIM3, PSEN1, and RGCC. In addition to identifying molecular pathways associated with AD neuropathology, we present a framework for genome-wide studies of histone modifications in complex disease.
UR - http://www.scopus.com/inward/record.url?scp=85055464133&partnerID=8YFLogxK
U2 - 10.1038/s41593-018-0253-7
DO - 10.1038/s41593-018-0253-7
M3 - Article
C2 - 30349106
AN - SCOPUS:85055464133
SN - 1097-6256
VL - 21
SP - 1618
EP - 1627
JO - Nature Neuroscience
JF - Nature Neuroscience
IS - 11
ER -