A KCNK16 mutation causing TALK-1 gain of function is associated with maturity-onset diabetes of the young

Sarah M. Graff, Stephanie R. Johnson, Paul J. Leo, Prasanna K. Dadi, Matthew T. Dickerson, Arya Y. Nakhe, Aideen M. McInerney-Leo, Mhairi Marshall, Karolina E. Zaborska, Charles M. Schaub, Matthew A. Brown, David A. Jacobson*, Emma L. Duncan

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders of impaired pancreatic β cell function. The mechanisms underlying MODY include β cell KATP channel dysfunction (e.g., KCNJ11 [MODY13] or ABCC8 [MODY12] mutations); however, no other β cell channelopathies have been associated with MODY to date. Here, we have identified a nonsynonymous coding variant in KCNK16 (NM_001135105: c.341T>C, p.Leu114Pro) segregating with MODY. KCNK16 is the most abundant and β cell–restricted K+ channel transcript, encoding the two-pore-domain K+ channel TALK-1. Whole-cell K+ currents demonstrated a large gain of function with TALK-1 Leu114Pro compared with TALK-1 WT, due to greater single-channel activity. Glucose-stimulated membrane potential depolarization and Ca2+ influx were inhibited in mouse islets expressing TALK-1 Leu114Pro with less endoplasmic reticulum Ca2+ storage. TALK-1 Leu114Pro significantly blunted glucose-stimulated insulin secretion compared with TALK-1 WT in mouse and human islets. These data suggest that KCNK16 is a previously unreported gene for MODY.

Original languageEnglish
Article number138057
JournalJCI Insight
Volume6
Issue number13
DOIs
Publication statusPublished - 8 Jul 2021

Fingerprint

Dive into the research topics of 'A KCNK16 mutation causing TALK-1 gain of function is associated with maturity-onset diabetes of the young'. Together they form a unique fingerprint.

Cite this