Abstract
Endothelial cells respond to fluid flow by elongating in the direction of flow. Cytoskeletal changes and activation of signalling molecules have been extensively studied in this response, including: activation of receptors by mechano-transduction, actin filament alignment in the direction of flow, changes to cell-substratum adhesions, actin-driven lamellipodium extension, and localised activation of Rho GTPases. To study this process we model the force over a single cell and couple this to a model of the Rho GTPases, Rac and Rho, via a Kelvin-body model of mechano-transduction. It is demonstrated that a mechano-transducer can respond to the normal component of the force is likely to be a necessary component of the signalling network in order to establish polarity. Furthermore, the rate-limiting step of Rac1 activation is predicted to be conversion of Rac-GDP to Rac-GTP, rather than activation of upstream components. Modelling illustrates that the aligned endothelial cell morphology could attenuate the signalling network. (C) 2011 Elsevier Ltd. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 34 - 42 |
Number of pages | 9 |
Journal | Journal of Theoretical Biology |
Volume | 280 |
Issue number | 1 |
DOIs | |
Publication status | Published - 7 Jul 2011 |