TY - JOUR
T1 - A pilot study to evaluate the erythrocyte glycocalyx sensitivity to sodium as a marker for cellular salt sensitivity in hypertension
AU - McNally, Ryan J.
AU - Morselli, Franca
AU - Farukh, Bushra
AU - Chowienczyk, Phil J.
AU - Faconti, Luca
N1 - Funding Information:
This work was performed as part of the AIM HY (Ancestry and biological Informative Markers in stratification of HYpertension) stratified medicines programme in hypertension funded by the Medical Research Council and The British Heart Foundation. We acknowledge support from the Department of Health via a National Institute for Health Research (NIHR) Biomedical Research Centre and Clinical Research Facility award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London, and the NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/4/12
Y1 - 2022/4/12
N2 - Supressed plasma renin in patients with primary hypertension is thought to be an indirect marker of sodium-induced volume expansion which is associated with more severe hypertension and hypertension-mediated organ damage. A novel test for erythrocyte glycocalyx sensitivity to sodium (eGCSS) has been proposed as a direct measure of sodium-induced damage on erythrocyte surfaces and a marker of sensitivity of the endothelium to salt in humans. Here we explore if eGCSS relates to plasma renin and other clinical and biochemical characteristics in a cohort of patients with primary hypertension. Hypertensive subjects (n = 85, 54% male) were characterised by blood biochemistry (including plasma renin/aldosterone), urine analysis for albumin-creatinine ratio (ACR), 24-h urine sodium/potassium excretion. eGCSS was measured using a commercially available kit. Correlations between eGCSS and clinical and biochemical characteristics were explored using Spearman’s correlation coefficient and characteristics compared across tertiles of eGCSS. eGCSS was inversely correlated with renin (p < 0.05), with renin 17.72 ± 18 µU/l in the highest tertile of eGCSS compared to 84.27 ± 146.5 µU/l in the lowest (p = 0.012). eGCSS was positively correlated with ACR (p < 0.01), with ACR 7.37 ± 15.29 vs. 1.25 ± 1.52 g/mol for the highest vs. lowest tertiles of eGCSS (p < 0.05). eGCSS was not correlated with other clinical characteristics or biochemical measures. These results suggests that sodium retention in hypertension characterised by a low-renin state is associated with cell membrane damage reflected by eGCSS. This may contribute to the hypertension-mediated organ damage and the excess mortality associated with sodium overload and “salt sensitivity”.
AB - Supressed plasma renin in patients with primary hypertension is thought to be an indirect marker of sodium-induced volume expansion which is associated with more severe hypertension and hypertension-mediated organ damage. A novel test for erythrocyte glycocalyx sensitivity to sodium (eGCSS) has been proposed as a direct measure of sodium-induced damage on erythrocyte surfaces and a marker of sensitivity of the endothelium to salt in humans. Here we explore if eGCSS relates to plasma renin and other clinical and biochemical characteristics in a cohort of patients with primary hypertension. Hypertensive subjects (n = 85, 54% male) were characterised by blood biochemistry (including plasma renin/aldosterone), urine analysis for albumin-creatinine ratio (ACR), 24-h urine sodium/potassium excretion. eGCSS was measured using a commercially available kit. Correlations between eGCSS and clinical and biochemical characteristics were explored using Spearman’s correlation coefficient and characteristics compared across tertiles of eGCSS. eGCSS was inversely correlated with renin (p < 0.05), with renin 17.72 ± 18 µU/l in the highest tertile of eGCSS compared to 84.27 ± 146.5 µU/l in the lowest (p = 0.012). eGCSS was positively correlated with ACR (p < 0.01), with ACR 7.37 ± 15.29 vs. 1.25 ± 1.52 g/mol for the highest vs. lowest tertiles of eGCSS (p < 0.05). eGCSS was not correlated with other clinical characteristics or biochemical measures. These results suggests that sodium retention in hypertension characterised by a low-renin state is associated with cell membrane damage reflected by eGCSS. This may contribute to the hypertension-mediated organ damage and the excess mortality associated with sodium overload and “salt sensitivity”.
UR - http://www.scopus.com/inward/record.url?scp=85128037823&partnerID=8YFLogxK
U2 - 10.1038/s41371-022-00683-z
DO - 10.1038/s41371-022-00683-z
M3 - Article
C2 - 35414109
AN - SCOPUS:85128037823
SN - 0950-9240
JO - Journal of Human Hypertension
JF - Journal of Human Hypertension
ER -