King's College London

Research portal

A putative RNA binding protein from Plasmodium vivax apicoplast

Research output: Contribution to journalArticlepeer-review

Sofía M. García-Mauriño, Antonio Díaz-Quintana, Francisco Rivero-Rodríguez, Isabel Cruz-Gallardo, Christian Grüttner, Marian Hernández-Vellisca, Irene Díaz-Moreno

Original languageEnglish
JournalFEBS Open Bio
Early online date31 Dec 2017
Accepted/In press14 Nov 2017
E-pub ahead of print31 Dec 2017

King's Authors


Malaria is caused by Apicomplexa protozoans from the Plasmodium genus entering the bloodstream of humans and animals through the bite of the female mosquitoes. The annotation of the Plasmodium vivax genome revealed a putative RNA binding protein (apiRBP) that was predicted to be trafficked into the apicoplast, a plastid organelle unique to Apicomplexa protozoans. Although a 3D structural model of the apiRBP corresponds to a noncanonical RNA recognition motif with an additional C-terminal α-helix (α3), preliminary protein production trials were nevertheless unsuccessful. Theoretical solvation analysis of the apiRBP model highlighted an exposed hydrophobic region clustering α3. Hence, we used a C-terminal GFP-fused chimera to stabilize the highly insoluble apiRBP and determined its ability to bind U-rich stretches of RNA. The affinity of apiRBP toward such RNAs is highly dependent on ionic strength, suggesting that the apiRBP-RNA complex is driven by electrostatic interactions. Altogether, apiRBP represents an attractive tool for apicoplast transcriptional studies and for antimalarial drug design.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454