TY - JOUR
T1 - A Reputation-based Framework for Honest Provenance Reporting
AU - Barakat, Lina
AU - Taylor, Phillip
AU - Griffiths, Nathan
AU - Miles, Simon
PY - 2021/12/20
Y1 - 2021/12/20
N2 - Given the distributed, heterogenous, and dynamic nature of service-based IoT systems, capturing circumstances data underlying service provisions becomes increasingly important for understanding process flow and tracing how outputs came about, thus enabling clients to make more informed decisions regarding future interaction partners. Whilst service providers are the main source of such circumstances data, they may often be reluctant to release it, e.g. due to the cost and effort required, or to protect their interests. In response, this paper introduces a reputation-based framework, guided by intelligent software agents, to support the sharing of truthful circumstances information by providers. In this framework, assessor agents, acting on behalf of clients, rank and select service providers according to reputation, while provider agents, acting on behalf of service providers, learn from the environment and adjust provider’s circumstances provision policies in the direction that increases provider profit with respect to perceived reputation. The novelty of the reputation assessment model adopted by assessor agents lies in affecting provider reputation scores by whether or not they reveal truthful circumstances data underlying their service provisions, in addition to other factors commonly adopted by existing reputation schemes. The effectiveness of the proposed framework is demonstrated through an agent-based simulation including robustness against a number of attacks, with a comparative performance analysis against FIRE as a baseline reputation model.
AB - Given the distributed, heterogenous, and dynamic nature of service-based IoT systems, capturing circumstances data underlying service provisions becomes increasingly important for understanding process flow and tracing how outputs came about, thus enabling clients to make more informed decisions regarding future interaction partners. Whilst service providers are the main source of such circumstances data, they may often be reluctant to release it, e.g. due to the cost and effort required, or to protect their interests. In response, this paper introduces a reputation-based framework, guided by intelligent software agents, to support the sharing of truthful circumstances information by providers. In this framework, assessor agents, acting on behalf of clients, rank and select service providers according to reputation, while provider agents, acting on behalf of service providers, learn from the environment and adjust provider’s circumstances provision policies in the direction that increases provider profit with respect to perceived reputation. The novelty of the reputation assessment model adopted by assessor agents lies in affecting provider reputation scores by whether or not they reveal truthful circumstances data underlying their service provisions, in addition to other factors commonly adopted by existing reputation schemes. The effectiveness of the proposed framework is demonstrated through an agent-based simulation including robustness against a number of attacks, with a comparative performance analysis against FIRE as a baseline reputation model.
KW - reputation
KW - provenance
KW - multi-agent systems
U2 - 10.1145/3507908
DO - 10.1145/3507908
M3 - Article
SN - 1533-5399
JO - Acm Transactions On Internet Technology
JF - Acm Transactions On Internet Technology
ER -