King's College London

Research portal

A Short Note on the Scaling Function Constant Problem in the Two-Dimensional Ising Model

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)672-683
JournalJournal of Statistical Physics
Volume170
Issue number4
Early online date19 Dec 2017
DOIs
Publication statusPublished - Feb 2018

Documents

King's Authors

Abstract

We provide a simple derivation of the constant factor in the short-distance asymptotics of the tau-function associated with the 2-point function of the two-dimensional Ising model. This factor was first computed by Tracy (Commun Math Phys 142:297–311, 1991) via an exponential series expansion of the correlation function. Further simplifications in the analysis are due to Tracy and Widom (Commun Math Phys 190:697–721, 1998) using Fredholm determinant representations of the correlation function and Wiener–Hopf approximation
results for the underlying resolvent operator. Our method relies on an action integral representation of the tau-function and asymptotic results for the underlying Painlevé-III transcendent from McCoy et al. (J Math Phys 18:1058–1092, 1977).

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454