King's College London

Research portal

A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)1-11
Number of pages11
JournalEuropean Journal of Nuclear Medicine and Molecular Imaging
Early online date28 Jul 2016
DOIs
StateE-pub ahead of print - 28 Jul 2016

Documents

King's Authors

Abstract

Purpose: To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. Methods: MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. Results: Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABAA receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson’s disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABAA receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. Conclusions: PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments.

Download statistics

No data available

View graph of relations

© 2018 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454