King's College London

Research portal

A Work Flow to Build and Validate Patient Specific Left Atrium Electrophysiology Models from Catheter Measurements

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)153-163
JournalMedical Image Analysis
Volume47
Early online date27 Apr 2018
DOIs
Accepted/In press19 Apr 2018
E-pub ahead of print27 Apr 2018
PublishedJul 2018

Documents

King's Authors

Abstract

Biophysical models of the atrium provide a physically constrained framework for describing the current state of an atrium and allow predictions of how that atrium will respond to therapy. We propose a work flow to simulate patient specific electrophysiological heterogeneity from clinical data and validate the resulting biophysical models. In 7 patients we recorded the atrial anatomy with an electroanatomical mapping system (St Jude Velocity); we then applied an S1-S2 electrical stimulation protocol from the coronary sinus (CS) and the high right atrium (HRA) whilst recording the activation patterns using a PentaRay catheter with 10 bipolar electrodes at 12 ± 2 sites across the atrium. Using only the activation times measured with a PentaRay catheter and caused by a stimulus applied in the CS with a remote catheter we fitted the four parameters for a modified Mitchell-Schaeffer model and the tissue conductivity to the recorded local conduction velocity restitution curve and estimated local effective refractory period. Model parameters were then interpolated across each atrium. The fitted model recapitulated the S1-S2 activation times for CS pacing giving a correlation ranging between 0.81 and 0.98. The model was validated by comparing simulated activations times with the independently recorded HRA pacing S1-S2 activation times, giving a correlation ranging between 0.65 and 0.96. The resulting work flow provides the first validated cohort of models that capture clinically measured patient specific electrophysiological heterogeneity.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454