Accelerated high-resolution free-breathing 3D whole-heart T2-prepared black-blood and bright-blood cardiovascular magnetic resonance

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)
85 Downloads (Pure)

Abstract

Background
The free-breathing 3D whole-heart T2-prepared Bright-blood and black-blOOd phase SensiTive inversion recovery (BOOST) cardiovascular magnetic resonance (CMR) sequence was recently proposed for simultaneous bright-blood coronary CMR angiography and black-blood late gadolinium enhancement (LGE) imaging. This sequence enables simultaneous visualization of cardiac anatomy, coronary arteries and fibrosis. However, high-resolution (< 1.4 × 1.4 × 1.4 mm3) fully-sampled BOOST requires long acquisition times of ~ 20 min.

Methods
In this work, we propose to extend a highly efficient respiratory-resolved motion-corrected reconstruction framework (XD-ORCCA) to T2-prepared BOOST to enable high-resolution 3D whole-heart coronary CMR angiography and black-blood LGE in a clinically feasible scan time. Twelve healthy subjects were imaged without contrast injection (pre-contrast BOOST) and 10 patients with suspected cardiovascular disease were imaged after contrast injection (post-contrast BOOST). A quantitative analysis software was used to compare accelerated pre-contrast BOOST against the fully-sampled counterpart (vessel sharpness and length of the left and right coronary arteries). Moreover, three cardiologists performed diagnostic image quality scoring for clinical 2D LGE and both bright- and black-blood 3D BOOST imaging using a 4-point scale (1–4, non-diagnostic–fully diagnostic). A two one-sided test of equivalence (TOST) was performed to compare the pre-contrast BOOST images. Nonparametric TOST was performed to compare post-contrast BOOST image quality scores.

Results
The proposed method produces images from 3.8 × accelerated non-contrast-enhanced BOOST acquisitions with comparable vessel length and sharpness to those obtained from fully- sampled scans in healthy subjects. Moreover, in terms of visual grading, the 3D BOOST LGE datasets (median 4) and the clinical 2D counterpart (median 3.5) were found to be statistically equivalent (p < 0.05). In addition, bright-blood BOOST images allowed for visualization of the proximal and middle left anterior descending and right coronary sections with high diagnostic quality (mean score > 3.5).

Conclusions
The proposed framework provides high‐resolution 3D whole-heart BOOST images from a single free-breathing acquisition in ~ 7 min.
Original languageEnglish
Article number88
JournalJournal of Cardiovascular Magnetic Resonance
Volume22
Issue number1
DOIs
Publication statusPublished - 14 Dec 2020

Fingerprint

Dive into the research topics of 'Accelerated high-resolution free-breathing 3D whole-heart T2-prepared black-blood and bright-blood cardiovascular magnetic resonance'. Together they form a unique fingerprint.

Cite this