TY - JOUR
T1 - Acceptability of Automated Robotic Clinical Breast Examination
T2 - Survey Study
AU - Jenkinson, George P.
AU - Houghton, Natasha
AU - van Zalk, Nejra
AU - Waller, Jo
AU - Bello, Fernando
AU - Tzemanaki, Antonia
N1 - Funding Information:
The authors would like to acknowledge the support of the Cancer Research UK Patient and Public Involvement team for their invaluable advice. They would also like to acknowledge People in Health West of England, who promoted our survey. GPJ and AT would like to thank Miss Sasirekha Govindarajulu for providing invaluable experience and insight into breast cancer clinics. Finally, the authors would like to acknowledge the respondents for their time and participation. This work was supported by project Automated Robotic Examination Intelligent System, Cancer Research UK (grant C24524/A30038), and the Engineering and Physical Sciences Research Council (grant EP/R513179/1).
Publisher Copyright:
© 2023 JMIR Pediatrics and Parenting. All rights reserved.
PY - 2023
Y1 - 2023
N2 - Background: In the United Kingdom, women aged 50 to 70 years are invited to undergo mammography. However, 10% of invasive breast cancers occur in women aged ≤45 years, representing an unmet need for young women. Identifying a suitable screening modality for this population is challenging; mammography is insufficiently sensitive, whereas alternative diagnostic methods are invasive or costly. Robotic clinical breast examination (R-CBE)—using soft robotic technology and machine learning for fully automated clinical breast examination—is a theoretically promising screening modality with early prototypes under development. Understanding the perspectives of potential users and partnering with patients in the design process from the outset is essential for ensuring the patient-centered design and implementation of this technology. Objective: This study investigated the attitudes and perspectives of women regarding the use of soft robotics and intelligent systems in breast cancer screening. It aimed to determine whether such technology is theoretically acceptable to potential users and identify aspects of the technology and implementation system that are priorities for patients, allowing these to be integrated into technology design. Methods: This study used a mixed methods design. We conducted a 30-minute web-based survey with 155 women in the United Kingdom. The survey comprised an overview of the proposed concept followed by 5 open-ended questions and 17 closed questions. Respondents were recruited through a web-based survey linked to the Cancer Research United Kingdom patient involvement opportunities web page and distributed through research networks’ mailing lists. Qualitative data generated via the open-ended questions were analyzed using thematic analysis. Quantitative data were analyzed using 2-sample Kolmogorov-Smirnov tests, 1-tailed t tests, and Pearson coefficients. Results: Most respondents (143/155, 92.3%) indicated that they would definitely or probably use R-CBE, with 82.6% (128/155) willing to be examined for up to 15 minutes. The most popular location for R-CBE was at a primary care setting, whereas the most accepted method for receiving the results was an on-screen display (with an option to print information) immediately after the examination. Thematic analysis of free-text responses identified the following 7 themes: women perceive that R-CBE has the potential to address limitations in current screening services; R-CBE may facilitate increased user choice and autonomy; ethical motivations for supporting R-CBE development; accuracy (and users’ perceptions of accuracy) is essential; results management with clear communication is a priority for users; device usability is important; and integration with health services is key. Conclusions: There is a high potential for the acceptance of R-CBE in its target user group and a high concordance between user expectations and technological feasibility. Early patient participation in the design process allowed the authors to identify key development priorities for ensuring that this new technology meets the needs of users. Ongoing patient and public involvement at each development stage is essential.
AB - Background: In the United Kingdom, women aged 50 to 70 years are invited to undergo mammography. However, 10% of invasive breast cancers occur in women aged ≤45 years, representing an unmet need for young women. Identifying a suitable screening modality for this population is challenging; mammography is insufficiently sensitive, whereas alternative diagnostic methods are invasive or costly. Robotic clinical breast examination (R-CBE)—using soft robotic technology and machine learning for fully automated clinical breast examination—is a theoretically promising screening modality with early prototypes under development. Understanding the perspectives of potential users and partnering with patients in the design process from the outset is essential for ensuring the patient-centered design and implementation of this technology. Objective: This study investigated the attitudes and perspectives of women regarding the use of soft robotics and intelligent systems in breast cancer screening. It aimed to determine whether such technology is theoretically acceptable to potential users and identify aspects of the technology and implementation system that are priorities for patients, allowing these to be integrated into technology design. Methods: This study used a mixed methods design. We conducted a 30-minute web-based survey with 155 women in the United Kingdom. The survey comprised an overview of the proposed concept followed by 5 open-ended questions and 17 closed questions. Respondents were recruited through a web-based survey linked to the Cancer Research United Kingdom patient involvement opportunities web page and distributed through research networks’ mailing lists. Qualitative data generated via the open-ended questions were analyzed using thematic analysis. Quantitative data were analyzed using 2-sample Kolmogorov-Smirnov tests, 1-tailed t tests, and Pearson coefficients. Results: Most respondents (143/155, 92.3%) indicated that they would definitely or probably use R-CBE, with 82.6% (128/155) willing to be examined for up to 15 minutes. The most popular location for R-CBE was at a primary care setting, whereas the most accepted method for receiving the results was an on-screen display (with an option to print information) immediately after the examination. Thematic analysis of free-text responses identified the following 7 themes: women perceive that R-CBE has the potential to address limitations in current screening services; R-CBE may facilitate increased user choice and autonomy; ethical motivations for supporting R-CBE development; accuracy (and users’ perceptions of accuracy) is essential; results management with clear communication is a priority for users; device usability is important; and integration with health services is key. Conclusions: There is a high potential for the acceptance of R-CBE in its target user group and a high concordance between user expectations and technological feasibility. Early patient participation in the design process allowed the authors to identify key development priorities for ensuring that this new technology meets the needs of users. Ongoing patient and public involvement at each development stage is essential.
KW - automated diagnosis
KW - breast cancer
KW - breast cancer detection
KW - breast examination
KW - health care robotics
KW - mammography
KW - participatory design
KW - patient and public involvement
KW - user acceptability
UR - http://www.scopus.com/inward/record.url?scp=85151904653&partnerID=8YFLogxK
U2 - 10.2196/42704
DO - 10.2196/42704
M3 - Article
AN - SCOPUS:85151904653
SN - 2152-7202
VL - 15
JO - Journal of Participatory Medicine
JF - Journal of Participatory Medicine
M1 - e42704
ER -