Acquisition and reconstruction conditions in silico for accurate and precise magnetic resonance elastography

Jin Long Yue, Marion Tardieu, Felicia Julea, Tanguy Boucneau, Ralph Sinkus, Claire Pellot-Barakat, Xavier Maître

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Magnetic resonance elastography (MRE) is a non invasive imaging modality, which holds the promise of absolute quantification of the mechanical properties of human tissues in vivo. MRE reconstruction with algebraic inversion of the Helmholtz equation upon the curl of the shear displacement field may theoretically be flawless. However, its performances are challenged by multiple experimental parameters, especially the frequency and the amplitude of the mechanical wave, the voxel size and the signal-to-noise ratio of the MRE acquisition. A point source excitation was simulated and realistic displacement fields were analytically computed to simulate MRE data sets in an isotropic, homogeneous, linearly-elastic, and half-space infinite medium. Acquisition and reconstruction methods were challenged and the joint influence of the aforementioned parameters was studied. For a given signal-to-noise ratio, the conditions on the number of voxels per wavelength were determined for optimizing voxel-wise accuracy and precision in MRE. It was shown that, once data are acquired, the reconstruction quality could even be improved by effective interpolation or decimation so data could eventually fulfill favorable conditions for mechanical characterization of the tissue. Finally, the overall outcome, which is usually computed from the three acquired motion-encoded directions, may further be improved by appropriate averaging strategies that are based on adapted curl of shear displacement field quality-weighting.

Original languageEnglish
Pages (from-to)8655-8670
Number of pages16
JournalPhysics in Medicine and Biology
Issue number22
Early online date1 Nov 2017
Publication statusE-pub ahead of print - 1 Nov 2017


  • magnetic resonance elastography
  • point source excitation
  • reconstruction
  • shear wave
  • simulation
  • wave equation


Dive into the research topics of 'Acquisition and reconstruction conditions in silico for accurate and precise magnetic resonance elastography'. Together they form a unique fingerprint.

Cite this