Adipose tissue eQTL meta-analysis highlights the contribution of allelic heterogeneity to gene expression regulation and cardiometabolic traits.

Sarah M. Brotman, Julia S. El-Sayed Moustafa, Li Guan, K. Alaine Broadaway, Dongmeng Wang, Anne U. Jackson, Ryan Welch, Kevin W. Currin, Max Tomlinson, Swarooparani Vadlamudi, Heather M. Stringham, Amy L. Roberts, Timo A. Lakka, Anniina Oravilahti, Lilian Fernandes Silva, Narisu Narisu, Michael R. Erdos, Tingfen Yan, Lori L. Bonnycastle, Chelsea K. RaulersonYasrab Raza, Xinyu Yan, Stephen C. J. Parker, Johanna Kuusisto, Päivi Pajukanta, Jaakko Tuomilehto, Francis S. Collins, Michael Boehnke, Michael I. Love, Heikki A. Koistinen, Markku Laakso, Karen L. Mohlke, Kerrin S. Small, Laura J. Scott

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
20 Downloads (Pure)

Abstract

Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. In the present study, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34,774 conditionally distinct expression quantitative trait locus (eQTL) signals at 18,476 genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared with primary eQTL signals, nonprimary eQTL signals had lower effect sizes, lower minor allele frequencies and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTLs with genome-wide association study (GWAS) signals for 28 cardiometabolic traits identified 1,835 genes. Inclusion of nonprimary eQTL signals increased discovery of colocalized GWAS–eQTL signals by 46%. Furthermore, 21 genes with ≥2 colocalized GWAS–eQTL signals showed a mediating gene dosage effect on the GWAS trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.
Original languageEnglish
Article numbere1000888
Pages (from-to)180-192
Number of pages13
JournalNature Genetics
Volume57
Issue number1
Early online date2 Jan 2025
DOIs
Publication statusPublished - Jan 2025

Fingerprint

Dive into the research topics of 'Adipose tissue eQTL meta-analysis highlights the contribution of allelic heterogeneity to gene expression regulation and cardiometabolic traits.'. Together they form a unique fingerprint.

Cite this