TY - JOUR
T1 - Advanced Wearable Thermocells for Body Heat Harvesting
AU - Liu, Yuqing
AU - Zhang, Shuai
AU - Zhou, Yuetong
AU - Buckingham, Mark A.
AU - Aldous, Leigh
AU - Sherrell, Peter C.
AU - Wallace, Gordon G.
AU - Ryder, Gregory
AU - Faisal, Shaikh
AU - Officer, David L.
AU - Beirne, Stephen
AU - Chen, Jun
PY - 2020/12/22
Y1 - 2020/12/22
N2 - Thermoelectrochemical cells (thermocells) designed for harvesting human body heat can provide constant power output for wearable electronics, supplementing state-of-the-art flexible power storage and conversion solutions. However, a systematic investigation into the optimization of wearable thermocells is lacking, especially with regard to device design, n-type electrolytes, and electrode/electrolyte integration. Here, a n-type gel electrolyte: polyvinyl alcohol-FeCl2/3 with outstanding flexibility and elasticity and exceptional electrolyte/electrode integration into a 3D porous poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate (PEDOT/PSS) electrode, is produced via an in situ chemical crosslinking method. The integrated n-type cell shows excellent seebeck coefficients (0.85 mV K−1) and output current density (1.74 A m−2 K−1) that are comparable with an optimized p-type cell consisting of a carboxymethylcellulose-K3/4Fe(CN)6 electrolyte with a 3D PEDOT/PSS-edge functionalized graphene/carbon nanotube electrode (−1.22 mV K−1 and 1.85 A m−2 K−1). The equivalent performance of the n-type and p-type cells enables the effective series connection of up to 18 pairs of p–n cells that combines to give an output voltage of 0.34 V (∆T = 10 K). This in-series device is fabricated into a proof-of-concept watch strap, which can harvest body heat, charge supercapacitor (up to 470 mF) as well as illuminate a green light emitting diode, demonstrating the practical applications.
AB - Thermoelectrochemical cells (thermocells) designed for harvesting human body heat can provide constant power output for wearable electronics, supplementing state-of-the-art flexible power storage and conversion solutions. However, a systematic investigation into the optimization of wearable thermocells is lacking, especially with regard to device design, n-type electrolytes, and electrode/electrolyte integration. Here, a n-type gel electrolyte: polyvinyl alcohol-FeCl2/3 with outstanding flexibility and elasticity and exceptional electrolyte/electrode integration into a 3D porous poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate (PEDOT/PSS) electrode, is produced via an in situ chemical crosslinking method. The integrated n-type cell shows excellent seebeck coefficients (0.85 mV K−1) and output current density (1.74 A m−2 K−1) that are comparable with an optimized p-type cell consisting of a carboxymethylcellulose-K3/4Fe(CN)6 electrolyte with a 3D PEDOT/PSS-edge functionalized graphene/carbon nanotube electrode (−1.22 mV K−1 and 1.85 A m−2 K−1). The equivalent performance of the n-type and p-type cells enables the effective series connection of up to 18 pairs of p–n cells that combines to give an output voltage of 0.34 V (∆T = 10 K). This in-series device is fabricated into a proof-of-concept watch strap, which can harvest body heat, charge supercapacitor (up to 470 mF) as well as illuminate a green light emitting diode, demonstrating the practical applications.
KW - body heat
KW - electrode/electrolyte integration
KW - gel electrolytes
KW - thermocells
UR - http://www.scopus.com/inward/record.url?scp=85091759643&partnerID=8YFLogxK
U2 - 10.1002/aenm.202002539
DO - 10.1002/aenm.202002539
M3 - Article
AN - SCOPUS:85091759643
SN - 1614-6832
VL - 10
JO - Advanced Energy Materials
JF - Advanced Energy Materials
IS - 48
M1 - 2002539
ER -