Agreement of Image Quality Metrics with Radiological Evaluation in the Presence of Motion Artifacts

Elisa Marchetto, Hannah Eichhorn, Daniel Gallichan, Julia A. Schnabel, Melanie Ganz

Research output: Working paper/PreprintPreprint

28 Downloads (Pure)

Abstract

Purpose: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. In this work, we compare the performance of commonly used reference-based and reference-free image quality metrics on a unique dataset with real motion artifacts. We further analyze the image quality metrics' robustness to typical pre-processing techniques. Methods: We compared five reference-based and five reference-free image quality metrics on data acquired with and without intentional motion (2D and 3D sequences). The metrics were recalculated seven times with varying pre-processing steps. The anonymized images were rated by radiologists and radiographers on a 1-5 Likert scale. Spearman correlation coefficients were computed to assess the relationship between image quality metrics and observer scores. Results: All reference-based image quality metrics showed strong correlation with observer assessments, with minor performance variations across sequences. Among reference-free metrics, Average Edge Strength offers the most promising results, as it consistently displayed stronger correlations across all sequences compared to the other reference-free metrics. Overall, the strongest correlation was achieved with percentile normalization and restricting the metric values to the skull-stripped brain region. In contrast, correlations were weaker when not applying any brain mask and using min-max or no normalization. Conclusion: Reference-based metrics reliably correlate with radiological evaluation across different sequences and datasets. Pre-processing steps, particularly normalization and brain masking, significantly influence the correlation values. Future research should focus on refining pre-processing techniques and exploring machine learning approaches for automated image quality evaluation.
Original languageUndefined/Unknown
Publication statusPublished - 24 Dec 2024

Keywords

  • physics.med-ph

Cite this