TY - JOUR
T1 - Alterations in cortical thickness development in preterm-born individuals
T2 - Implications for high-order cognitive functions
AU - Nam, Kie Woo
AU - Castellanos, Nazareth
AU - Simmons, Andrew
AU - Froudist-Walsh, Seán
AU - Allin, Matthew P
AU - Walshe, Muriel
AU - Murray, Robin M
AU - Evans, Alan
AU - Muehlboeck, J-Sebastian
AU - Nosarti, Chiara
PY - 2015/7/15
Y1 - 2015/7/15
N2 - Very preterm birth (gestational age <33weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15years) and beginning of adulthood (mean age 20years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing.
AB - Very preterm birth (gestational age <33weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15years) and beginning of adulthood (mean age 20years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing.
U2 - 10.1016/j.neuroimage.2015.04.015
DO - 10.1016/j.neuroimage.2015.04.015
M3 - Article
C2 - 25871628
SN - 1053-8119
VL - 115
SP - 64
EP - 75
JO - NeuroImage
JF - NeuroImage
IS - 0
ER -