Research output: Contribution to journal › Article › peer-review
David J Harris, Tom Arthur, David P Broadbent, Mark R Wilson, Samuel J Vine, Oliver Runswick
Original language | English |
---|---|
Pages (from-to) | 2023-2038 |
Number of pages | 16 |
Journal | Sports Medicine |
Volume | 52 |
Issue number | 9 |
Early online date | 3 May 2022 |
DOIs | |
E-pub ahead of print | 3 May 2022 |
Published | Sep 2022 |
Additional links |
Optimal performance in time-constrained and dynamically changing environments depends on making reliable predictions about future outcomes. In sporting tasks, performers have been found to employ multiple information sources to maximise the accuracy of their predictions, but questions remain about how different information sources are weighted and integrated to guide anticipation. In this paper, we outline how predictive processing approaches, and active inference in particular, provide a unifying account of perception and action that explains many of the prominent findings in the sports anticipation literature. Active inference proposes that perception and action are underpinned by the organism's need to remain within certain stable states. To this end, decision making approximates Bayesian inference and actions are used to minimise future prediction errors during brain-body-environment interactions. Using a series of Bayesian neurocomputational models based on a partially observable Markov process, we demonstrate that key findings from the literature can be recreated from the first principles of active inference. In doing so, we formulate a number of novel and empirically falsifiable hypotheses about human anticipation capabilities that could guide future investigations in the field.
King's College London - Homepage
© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454