TY - JOUR
T1 - An Assistive Coughing Device for Post-Laryngectomy Patients
AU - Yue, Keren
AU - Lancashire, Henry
AU - de Jager, Kylie
AU - Graveston, James
AU - Birchall, Martin
AU - Vanhoestenberghe, Anne
AU - Conn, Andrew
AU - Rossiter, Jonathan
PY - 2021/8
Y1 - 2021/8
N2 - People who have undergone total laryngectomy typically have difficulties speaking and coughing. Coughing, the protective reflex action where air is rapidly expelled from the lungs to clear the airway, is crucial in everyday life. Insufficiency in coughing can lead to serious chest infections. In this research we present a bionic assistive coughing device (RoboCough) to improve coughing efficacy among laryngectomy patients by increasing pressure and flow rate. RoboCough was designed to mimic the function of the glottis and trachea in the upper respiratory system. Experimental results show a significant increase (t(64) = 4.9, p < 0.0001) in peak cough flow rate and peak cough pressure (t(64) = 12.6, p < 0.0001) among 33 control participants using RoboCough. A pilot study with a smaller cohort of laryngectomy patients shows improvement in peak cough pressure (p = 0.0159) using RoboCough. Preliminary results also show that post-laryngectomy coughs achieved similar peak cough flow (Z = -0.9933, p = 0.32) to the control group's natural cough. Coughing capabilities could be improved through using RoboCough. Applications of RoboCough include simulation of vocal folds and respiratory conditions, rehabilitation of ineffective coughs from laryngeal and respiratory diseases and as a test-bed for the development of medical devices for respiratory support.
AB - People who have undergone total laryngectomy typically have difficulties speaking and coughing. Coughing, the protective reflex action where air is rapidly expelled from the lungs to clear the airway, is crucial in everyday life. Insufficiency in coughing can lead to serious chest infections. In this research we present a bionic assistive coughing device (RoboCough) to improve coughing efficacy among laryngectomy patients by increasing pressure and flow rate. RoboCough was designed to mimic the function of the glottis and trachea in the upper respiratory system. Experimental results show a significant increase (t(64) = 4.9, p < 0.0001) in peak cough flow rate and peak cough pressure (t(64) = 12.6, p < 0.0001) among 33 control participants using RoboCough. A pilot study with a smaller cohort of laryngectomy patients shows improvement in peak cough pressure (p = 0.0159) using RoboCough. Preliminary results also show that post-laryngectomy coughs achieved similar peak cough flow (Z = -0.9933, p = 0.32) to the control group's natural cough. Coughing capabilities could be improved through using RoboCough. Applications of RoboCough include simulation of vocal folds and respiratory conditions, rehabilitation of ineffective coughs from laryngeal and respiratory diseases and as a test-bed for the development of medical devices for respiratory support.
U2 - 10.1109/TMRB.2021.3100798
DO - 10.1109/TMRB.2021.3100798
M3 - Article
C2 - 34476392
SN - 2576-3202
VL - 3
SP - 838
EP - 846
JO - IEEE Transactions on Medical Robotics and Bionics
JF - IEEE Transactions on Medical Robotics and Bionics
IS - 3
ER -