An estimate for narrow operators on Lp([0 , 1])

Eugene Shargorodsky, Teo Sharia*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We prove a theorem, which generalises C. Franchetti’s estimate for the norm of a projection onto a rich subspace of Lp([0 , 1]) and the authors’ related estimate for compact operators on Lp([0 , 1]) , 1 ≤ p< ∞.

Original languageEnglish
Pages (from-to)321-326
JournalARCHIV DER MATHEMATIK
Volume116
Issue number3
DOIs
Publication statusPublished - 5 Nov 2020

Keywords

  • Estimate
  • Narrow operator
  • Norm

Fingerprint

Dive into the research topics of 'An estimate for narrow operators on Lp([0 , 1])'. Together they form a unique fingerprint.

Cite this