Analytical Expressions of Serial Manipulator Jacobians and their High-Order Derivatives based on Lie Theory

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

11 Citations (Scopus)

Abstract

Serial manipulator kinematics provide a mapping between joint variables in joint-space coordinates, and end-effector configurations in task-space Cartesian coordinates. Velocity mappings are represented via the manipulator Jacobian produced by direct differentiation of the forward kinematics. Acquisition of acceleration, jerk, and snap expressions, typically utilized for accurate trajectory-tracking, requires the computation of high-order Jacobian derivatives. As compared to conventional numerical/D-H approaches, this paper proposes a novel methodology to derive the Jacobians and their high-order derivatives symbolically, based on Lie theory, which requires that the derivatives are calculated with respect to each joint variable and time. Additionally, the technique described herein yields a mathematically sound solution to the high-order Jacobian derivatives, which distinguishes it from other relevant works. Performing computations with respect to the two inertial-fixed and body-fixed frames, the analytical form of the spatial and body Jacobians are derived, as well as their higher-order derivatives, without resorting to any approximations, whose expressions would depend explicitly on the joint state and the choice of reference frames. The proposed method provides more tractable computation of higher-order Jacobian derivatives, while its effectiveness has been verified by conducting a comparative analysis based on experimental data extracted from a KUKA LRB iiwa7 R800 manipulator.

Original languageEnglish
Title of host publication2020 IEEE International Conference on Robotics and Automation, ICRA 2020
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7095-7100
Number of pages6
ISBN (Electronic)9781728173955
DOIs
Publication statusPublished - May 2020
Event2020 IEEE International Conference on Robotics and Automation, ICRA 2020 - Paris, France
Duration: 31 May 202031 Aug 2020

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2020 IEEE International Conference on Robotics and Automation, ICRA 2020
Country/TerritoryFrance
CityParis
Period31/05/202031/08/2020

Fingerprint

Dive into the research topics of 'Analytical Expressions of Serial Manipulator Jacobians and their High-Order Derivatives based on Lie Theory'. Together they form a unique fingerprint.

Cite this