Animal models to improve our understanding and treatment of suicidal behavior

TD Gould, P Georgiou, LA Brenner, L Brundin, A Can, P Courtet, ZR Donaldson, Y Dwivedi, S Guillaume, II Gottesman, S Kanekar, CA Lowry, PF Renshaw, D Rujescu, EG Smith, G Turecki, P Zanos, CA Zarate, PA Zunszain, TT Postolache

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)
185 Downloads (Pure)

Abstract

Worldwide, suicide is a leading cause of death. Although a sizable proportion of deaths by suicide may be preventable, it is well documented that despite major governmental and international investments in research, education and clinical practice suicide rates have not diminished and are even increasing among several at-risk populations. Although nonhuman animals do not engage in suicidal behavior amenable to translational studies, we argue that animal model systems are necessary to investigate candidate endophenotypes of suicidal behavior and the neurobiology underlying these endophenotypes. Animal models are similarly a critical resource to help delineate treatment targets and pharmacological means to improve our ability to manage the risk of suicide. In particular, certain pathophysiological pathways to suicidal behavior, including stress and hypothalamic-pituitary-adrenal axis dysfunction, neurotransmitter system abnormalities, endocrine and neuroimmune changes, aggression, impulsivity and decision-making deficits, as well as the role of critical interactions between genetic and epigenetic factors, development and environmental risk factors can be modeled in laboratory animals. We broadly describe human biological findings, as well as protective effects of medications such as lithium, clozapine, and ketamine associated with modifying risk of engaging in suicidal behavior that are readily translatable to animal models. Endophenotypes of suicidal behavior, studied in animal models, are further useful for moving observed associations with harmful environmental factors (for example, childhood adversity, mechanical trauma aeroallergens, pathogens, inflammation triggers) from association to causation, and developing preventative strategies. Further study in animals will contribute to a more informed, comprehensive, accelerated and ultimately impactful suicide research portfolio
Original languageEnglish
Article numbere1092
Pages (from-to)1-22
JournalTranslational psychiatry
Volume7
DOIs
Publication statusPublished - 11 Apr 2017

Fingerprint

Dive into the research topics of 'Animal models to improve our understanding and treatment of suicidal behavior'. Together they form a unique fingerprint.

Cite this