King's College London

Research portal

Anonymizing datasets with demographics and diagnosis codes in the presence of utility constraints

Research output: Contribution to journalArticlepeer-review

Giorgos Poulis, Grigorios Loukides, Spiros Skiadopoulos, Spiros Skiadopoulos, Aris Gkoulalas-Divanis

Original languageEnglish
JournalJOURNAL OF BIOMEDICAL INFORMATICS
Early online date8 Nov 2016
DOIs
Accepted/In press1 Nov 2016
E-pub ahead of print8 Nov 2016

Documents

King's Authors

Abstract

Publishing data about patients that contain both demographics and diagnosis codes is essential to perform large-scale, low-cost medical studies. However, preserving the privacy and utility of such data is challenging, because it requires: (i) guarding against identity disclosure (re-identification) attacks based on both demographics and diagnosis codes, (ii) ensuring that the anonymized data remain useful in intended analysis tasks, and (iii) minimizing the information loss, incurred by anonymization, to preserve the utility of general analysis tasks that are difficult to determine before data publishing. Existing anonymization approaches are not suitable for being used in this setting, because they cannot satisfy all three requirements. Therefore, in this work, we propose a new approach to deal with this problem. We enforce the requirement (i) by applying (k; k^m)-anonymity, a privacy principle that prevents re-identification from attackers who know the demographics of a patient and up to m of their diagnosis codes, where k and m are tunable parameters. To capture the requirement (ii), we propose the concept of utility constraint for both demographics and diagnosis codes. Utility constraints limit the amount of generalization and are specified by data owners (e.g., the healthcare institution that performs anonymization). We also capture requirement (iii), by employing well-established information loss measures for demographics and for diagnosis
codes. To realize our approach, we develop an algorithm that enforces (k; k^m)-anonymity on a dataset containing both demographics and diagnosis codes, in a way that satisfies the specified utility constraints and with minimal information loss, according to the measures. Our experiments with a large dataset containing more than 200; 000 electronic health records
show the effectiveness and efficiency of our algorithm.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454