AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis

Elisabeth P Carpenter, Anne Corbett, Hellen Thomson, Jolanta Adacha, Kirsten Jensen, Julien Bergeron, Ioannis Kasampalidis, Rachel Exley, Megan Winterbotham, Christoph Tang, Geoff S Baldwin, Paul Freemont

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)

Abstract

Oxidative stress is a principal cause of DNA damage, and mechanisms to repair this damage are among the most highly conserved of biological processes. Oxidative stress is also used by phagocytes to attack bacterial pathogens in defence of the host. We have identified and characterised two apurinic/apyrimidinic (AP) endonuclease paralogues in the human pathogen Neisseria meningitidis. The presence of multiple versions of DNA repair enzymes in a single organism is usually thought to reflect redundancy in activities that are essential for cellular viability. We demonstrate here that these two AP endonuclease paralogues have distinct activities in DNA repair: one is a typical Neisserial AP endonuclease (NApe), whereas the other is a specialised 3'-phosphodiesterase Neisserial exonuclease (NExo). The lack of AP endonuclease activity of NExo is shown to be attributable to the presence of a histidine side chain, blocking the abasic ribose-binding site. Both enzymes are necessary for survival of N. meningitidis under oxidative stress and during bloodstream infection. The novel functional pairing of NExo and NApe is widespread among bacteria and appears to have evolved independently on several occasions.
Original languageEnglish
Article numberN/A
Pages (from-to)1363-1372
Number of pages10
JournalThe EMBO journal
Volume26
Issue number5
DOIs
Publication statusPublished - 7 Mar 2007

Keywords

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • Bacterial Proteins
  • Blotting, Western
  • Computational Biology
  • Crystallography, X-Ray
  • DNA Repair
  • DNA-(Apurinic or Apyrimidinic Site) Lyase
  • Histidine
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Mutation
  • Neisseria meningitidis
  • Oxidative Stress
  • Phylogeny
  • Protein Structure, Secondary
  • Rats
  • Rats, Wistar
  • Sequence Alignment
  • Virulence

Fingerprint

Dive into the research topics of 'AP endonuclease paralogues with distinct activities in DNA repair and bacterial pathogenesis'. Together they form a unique fingerprint.

Cite this