Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes

Sandra Reitmeier, Silke Kiessling, Thomas Clavel, Markus List, Eduardo L. Almeida, Tarini S. Ghosh, Klaus Neuhaus, Harald Grallert, Jakob Linseisen, Thomas Skurk, Beate Brandl, Taylor A. Breuninger, Martina Troll, Wolfgang Rathmann, Birgit Linkohr, Hans Hauner, Matthias Laudes, Andre Franke, Caroline I. Le Roy, Jordana T. BellTim Spector, Jan Baumbach, Paul W. O'Toole, Annette Peters, Dirk Haller*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

184 Citations (Scopus)

Abstract

Lifestyle, obesity, and the gut microbiome are important risk factors for metabolic disorders. We demonstrate in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscillations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D). Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort (FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 subjects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sampling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26 metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian rhythms and the microbiome in metabolic diseases. Reitmeier et al. show that specific gut microbes exhibit rhythmic oscillations in relative abundance and identified taxa with disrupted rhythmicity in individuals with type 2 diabetes (T2D). This arrhythmic signature contributed to the classification and prediction of T2D, suggesting functional links between circadian rhythmicity and the microbiome in metabolic diseases.

Original languageEnglish
Pages (from-to)258-272.e6
JournalCell Host and Microbe
Volume28
Issue number2
DOIs
Publication statusPublished - 12 Aug 2020

Keywords

  • amplicon sequencing
  • circadian rhythms
  • diurnal oscillations
  • human intestinal microbiota
  • machine learning
  • metagenomics
  • obesity
  • population-based cohorts
  • prediction
  • type 2 diabetes

Fingerprint

Dive into the research topics of 'Arrhythmic Gut Microbiome Signatures Predict Risk of Type 2 Diabetes'. Together they form a unique fingerprint.

Cite this