Article metasurface-enhanced antennas for microwave brain imaging

Eleonora Razzicchia*, Pan Lu, Wei Guo, Olympia Karadima, Ioannis Sotiriou, Navid Ghavami, Efthymios Kallos, George Palikaras, Panagiotis Kosmas

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Stroke is a very frequent disorder and one of the major leading causes of death and disability worldwide. Timely detection of stroke is essential in order to select and perform the correct treatment strategy. Thus, the use of an efficient imaging method for an early diagnosis of this syndrome could result in an increased survival’s rate. Nowadays, microwave imaging (MWI) for brain stroke detection and classification has attracted growing interest due to its non-invasive and non-ionising properties. In this paper, we present a feasibility study with the goal of enhancing MWI for stroke detection using metasurface (MTS) loaded antennas. In particular, three MTS-enhanced antennas integrated in different brain scanners are presented. For the first two antennas, which operate in a coupling medium, we show experimental measurements on an elliptical brain-mimicking gel phantom including cylindrical targets representing the bleeding in haemorrhagic stroke (h-stroke) and the not oxygenated tissue in ischaemic stroke (i-stroke). The reconstructed images and transmission and reflection parameter plots show that the MTS loadings improve the performance of our imaging prototype. Specifically, the signal transmitted across our head model is indeed increased by several dB‘s over the desired frequency range of 0.5–2.0 GHz, and an improvement in the quality of the reconstructed images is shown when the MTS is incorporated in the system. We also present a detailed simulation study on the performance of a new printed square monopole antenna (PSMA) operating in air, enhanced by a MTS superstrate loading. In particular, our previous developed brain scanner operating in an infinite lossy matching medium is compared to two tomographic systems operating in air: an 8-PSMA system and an 8-MTS-enhanced PSMA system. Our results show that our MTS superstrate enhances the antennas’ return loss by around 5 dB and increases the signal difference due to the presence of a blood-mimicking target up to 25 dB, which leads to more accurate reconstructions. In conclusion, MTS structures may be a significant hardware advancement towards the development of functional and ergonomic MWI scanners for stroke detection.

Original languageEnglish
Article number424
JournalDiagnostics
Volume11
Issue number3
DOIs
Publication statusPublished - Mar 2021

Keywords

  • Brain imaging
  • Enhanced-antenna
  • Metasurface (MTS)
  • Microwave imaging (MWI)
  • Microwave tomography (MWT)

Fingerprint

Dive into the research topics of 'Article metasurface-enhanced antennas for microwave brain imaging'. Together they form a unique fingerprint.

Cite this