Abstract
Purpose: To determine if computed tomographic (CT) texture features of primary colorectal cancer are related to 5-year overall survival rate.
Materials and Methods: Institutional review board waiver was obtained for this retrospective analysis. Texture features of the entire primary tumor were assessed with contrast material–enhanced staging CT studies obtained in 57 patients as part of an ethically approved study and by using proprietary software. Entropy, uniformity, kurtosis, skewness, and standard deviation of the pixel distribution histogram were derived from CT images without filtration and with filter values corresponding to fine (1.0), medium (1.5, 2.0), and coarse (2.5) textures. Patients were followed up until death and were censored at 5 years if they were still alive. Kaplan-Meier analysis was performed to determine the relationship, if any, between CT texture and 5-year overall survival rate. The Cox proportional hazards model was used to assess independence of texture parameters from stage.
Results: Follow-up data were available for 55 of 57 patients. There were eight stage I, 19 stage II, 17 stage III, and 11 stage IV cancers. Fine-texture feature Kaplan-Meier survival plots for entropy, uniformity, kurtosis, skewness, and standard deviation of the pixel distribution histogram were significantly different for tumors above and below each respective threshold receiver operating characteristic (ROC) curve optimal cutoff value (P = .001, P = .018, P = .032, P = .008, and P = .001, respectively), with poorer prognosis for ROC optimal values (a) less than 7.89 for entropy, (b) at least 0.01 for uniformity, (c) less than 2.48 for kurtosis, (d) at least −0.38 for skewness, and (e) less than 61.83 for standard deviation. Multivariate Cox proportional hazards regression analysis showed that each parameter was independent from the stage predictor of overall survival rate (P = .001, P = .009, P = .006, P = .02, and P = .001, respectively).
Conclusion: Fine-texture features are associated with poorer 5-year overall survival rate in patients with primary colorectal cancer.
Materials and Methods: Institutional review board waiver was obtained for this retrospective analysis. Texture features of the entire primary tumor were assessed with contrast material–enhanced staging CT studies obtained in 57 patients as part of an ethically approved study and by using proprietary software. Entropy, uniformity, kurtosis, skewness, and standard deviation of the pixel distribution histogram were derived from CT images without filtration and with filter values corresponding to fine (1.0), medium (1.5, 2.0), and coarse (2.5) textures. Patients were followed up until death and were censored at 5 years if they were still alive. Kaplan-Meier analysis was performed to determine the relationship, if any, between CT texture and 5-year overall survival rate. The Cox proportional hazards model was used to assess independence of texture parameters from stage.
Results: Follow-up data were available for 55 of 57 patients. There were eight stage I, 19 stage II, 17 stage III, and 11 stage IV cancers. Fine-texture feature Kaplan-Meier survival plots for entropy, uniformity, kurtosis, skewness, and standard deviation of the pixel distribution histogram were significantly different for tumors above and below each respective threshold receiver operating characteristic (ROC) curve optimal cutoff value (P = .001, P = .018, P = .032, P = .008, and P = .001, respectively), with poorer prognosis for ROC optimal values (a) less than 7.89 for entropy, (b) at least 0.01 for uniformity, (c) less than 2.48 for kurtosis, (d) at least −0.38 for skewness, and (e) less than 61.83 for standard deviation. Multivariate Cox proportional hazards regression analysis showed that each parameter was independent from the stage predictor of overall survival rate (P = .001, P = .009, P = .006, P = .02, and P = .001, respectively).
Conclusion: Fine-texture features are associated with poorer 5-year overall survival rate in patients with primary colorectal cancer.
Original language | English |
---|---|
Pages (from-to) | 177-184 |
Journal | Radiology |
Volume | 266 |
Issue number | 1 |
Early online date | 14 Nov 2012 |
DOIs | |
Publication status | Published - Jan 2013 |