Abstract
Background
Tumor spatial heterogeneity is an important prognostic factor, which may be reflected in medical images
Methods
Image texture analysis is an approach of quantifying heterogeneity that may not be appreciated by the naked eye. Different methods can be applied including statistical-, model-, and transform-based methods.
Results
Early evidence suggests that texture analysis has the potential to augment diagnosis and characterization as well as improve tumor staging and therapy response assessment in oncological practice.
Conclusion
This review provides an overview of the application of texture analysis with different imaging modalities, CT, MRI, and PET, to date and describes the technical challenges that have limited its widespread clinical implementation so far. With further efforts to refine its application, image texture analysis has the potential to develop into a valuable clinical tool for oncologic imaging.
Tumor spatial heterogeneity is an important prognostic factor, which may be reflected in medical images
Methods
Image texture analysis is an approach of quantifying heterogeneity that may not be appreciated by the naked eye. Different methods can be applied including statistical-, model-, and transform-based methods.
Results
Early evidence suggests that texture analysis has the potential to augment diagnosis and characterization as well as improve tumor staging and therapy response assessment in oncological practice.
Conclusion
This review provides an overview of the application of texture analysis with different imaging modalities, CT, MRI, and PET, to date and describes the technical challenges that have limited its widespread clinical implementation so far. With further efforts to refine its application, image texture analysis has the potential to develop into a valuable clinical tool for oncologic imaging.
Original language | English |
---|---|
Pages (from-to) | 573-589 |
Number of pages | 17 |
Journal | Insights into imaging |
Volume | 3 |
Issue number | 6 |
DOIs | |
Publication status | Published - Dec 2012 |