Asymptotic analysis of the Boltzmann equation for dark matter relics

Carl M. Bender, Sarben Sarkar

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


This paper presents an asymptotic analysis of the Boltzmann equations (Riccati differential equations) that describe the physics of thermal dark-matter-relic abundances. Two different asymptotic techniques are used, boundary-layer theory, which makes use of asymptotic matching, and the delta expansion, which is a powerful technique for solving nonlinear differential equations. Two different Boltzmann equations are considered. The first is derived from general relativistic considerations and the second arises in dilatonic string cosmology. The global asymptotic analysis presented here is used to find the long-time behavior of the solutions to these equations. In the first case, the nature of the so-called freeze-out region and the post-freeze-out behavior is explored. In the second case, the effect of the dilaton on cold dark-matter abundances is calculated and it is shown that there is a large-time power-law fall off of the dark-matter abundance.
Original languageEnglish
Article number103509
Number of pages19
Publication statusPublished - 27 Sept 2012


Dive into the research topics of 'Asymptotic analysis of the Boltzmann equation for dark matter relics'. Together they form a unique fingerprint.

Cite this