King's College London

Research portal

Asymptotic distribution of nodal intersections for arithmetic random waves

Research output: Contribution to journalArticlepeer-review

Maurizia Rossi, Igor Wigman

Original languageEnglish
Number of pages45
Issue number10
Accepted/In press25 Jun 2018
Published21 Aug 2018


King's Authors


We study the nodal intersections number of random Gaussian toral Laplace eigenfunctions ("arithmetic random waves") against a fixed smooth reference curve. The expected intersection number is proportional to the the square root of the eigenvalue times the length of curve, independent of its geometry. The asymptotic behaviour of the variance was addressed by Rudnick-Wigman; they found a precise asymptotic law for "generic" curves with nowhere vanishing curvature, depending on both its geometry and the angular distribution of lattice points lying on circles corresponding to the Laplace eigenvalue. They also discovered that there exist peculiar "static" curves, with variance of smaller order of magnitude, though did not prescribe what the true asymptotic behaviour is in this case. In this paper we study the finer aspects of the limit distribution of the nodal intersections number. For "generic" curves we prove the Central Limit Theorem (at least, for "most" of the energies). For the aforementioned static curves we establish a non-Gaussian limit theorem for the distribution of nodal intersections, and on the way find the true asymptotic behaviour of their fluctuations, under the well-separatedness assumption on the corresponding lattice points, satisfied by most of the eigenvalues.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454