@article{8423bd58744c4f3890220bd5f5750cb3,
title = "AtlFast3: The Next Generation of Fast Simulation in ATLAS",
abstract = "The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.",
author = "{ATLAS Collaboration} and G. Aad and B. Abbott and Abbott, {D. C.} and Abud, {A. Abed} and K. Abeling and Abhayasinghe, {D. K.} and Abidi, {S. H.} and A. Aboulhorma and H. Abramowicz and H. Abreu and Y. Abulaiti and Hoffman, {A. C.Abusleme} and Acharya, {B. S.} and B. Achkar and L. Adam and Bourdarios, {C. Adam} and L. Adamczyk and L. Adamek and Addepalli, {S. V.} and J. Adelman and A. Adiguzel and S. Adorni and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agapopoulou and Agaras, {M. N.} and J. Agarwala and A. Aggarwal and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and A. Ahmad and F. Ahmadov and Ahmed, {W. S.} and X. Ai and G. Aielli and I. Aizenberg and S. Akatsuka and M. Akbiyik and {\AA}kesson, {T. P.A.} and Akimov, {A. V.} and Khoury, {K. Al} and Alberghi, {G. L.} and J. Albert and P. Albicocco and Verzini, {M. J.Alconada} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa",
note = "Funding Information: We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ{\v S}, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sk{\l}odowska-Curie Actions, European Union; Investissements d{\textquoteright}Avenir Labex, Investissements d{\textquoteright}Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; G{\"o}ran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, UK. Publisher Copyright: {\textcopyright} 2022, Springer Nature Switzerland AG.",
year = "2022",
month = mar,
day = "11",
doi = "10.1007/s41781-021-00079-7",
language = "English",
volume = "6",
journal = "Computing and Software for Big Science",
issn = "2510-2044",
publisher = "Springer Nature",
number = "1",
}