TY - JOUR
T1 - Attachment of stem cells to scaffold particles for intra-cerebral transplantation
AU - Bible, Ellen
AU - Chau, David Y. S.
AU - Alexander, Morgan R.
AU - Price, Jack
AU - Shakesheff, Kevin M.
AU - Modo, Michel
PY - 2009
Y1 - 2009
N2 - Cell-replacement therapy and tissue regeneration using stem cells are of great interest to recover histological damage caused by neuro-degenerative disease or traumatic insults to the brain. To date, the main intra-cerebral delivery for these cells has been as a suspension in media through a thin needle. However, this does not provide cells with a support system that would allow tissue regeneration. Scaffold particles are needed to provide structural support to cells to form de novo tissue. In this 16-d protocol, we describe the generation and functionalization of poly (D,L-lactic-co-glycolic) acid (PLGA) particles to enhance cell attachment, the attachment procedure to avoid clumping and aggregation of cells and particles, and their preparation for intra-cerebral injection through a thin needle. Although the stem cell-scaffold transplantation is more complicated and labor-intensive than cell suspensions, it affords de novo tissue generation inside the brain and hence provides a significant step forward in traumatic brain repair.
AB - Cell-replacement therapy and tissue regeneration using stem cells are of great interest to recover histological damage caused by neuro-degenerative disease or traumatic insults to the brain. To date, the main intra-cerebral delivery for these cells has been as a suspension in media through a thin needle. However, this does not provide cells with a support system that would allow tissue regeneration. Scaffold particles are needed to provide structural support to cells to form de novo tissue. In this 16-d protocol, we describe the generation and functionalization of poly (D,L-lactic-co-glycolic) acid (PLGA) particles to enhance cell attachment, the attachment procedure to avoid clumping and aggregation of cells and particles, and their preparation for intra-cerebral injection through a thin needle. Although the stem cell-scaffold transplantation is more complicated and labor-intensive than cell suspensions, it affords de novo tissue generation inside the brain and hence provides a significant step forward in traumatic brain repair.
U2 - 10.1038/nprot.2009.156
DO - 10.1038/nprot.2009.156
M3 - Article
VL - 4
SP - 1440
EP - 1453
JO - Nature Protocols
JF - Nature Protocols
IS - 10
ER -