Automatic phase determination for retrospectively gated cardiac CT

R Manzke, T Kohler, T Nielsen, D Hawkes, M Grass

Research output: Contribution to journalArticlepeer-review

59 Citations (Scopus)

Abstract

The recent improvements in CT detector and gantry technology in combination with new heart rate adaptive cone beam reconstruction algorithms enable the visualization of the heart in three dimensions at high spatial resolution. However, the finite temporal resolution still impedes the artifact-free reconstruction of the heart at any arbitrary phase of the cardiac cycle. Cardiac phases must be found during which the heart is quasistationary to obtain outmost image quality. It is challenging to find these phases due to intercycle and patient-to-patient variability. Electrocardiogram (ECG) information does not always represent the heart motion with an adequate accuracy. In this publication, a simple and efficient image-based technique is introduced which is able to deliver stable cardiac phases in an automatic and patient-specific way. From low-resolution four-dimensional data sets, the most stable phases are derived by calculating the object similarity between subsequent phases in the cardiac cycle. Patient-specific information about the object motion can be determined and resolved spatially. This information is used to perform optimized high-resolution reconstructions at phases of little motion. Results based on a simulation study and three real patient data sets are presented. The projection data were generated using a 16-slice cone beam CT system in low-pitch helical mode with parallel ECG recording. (36 References).
Original languageEnglish
Pages (from-to)3345-62
Number of pages18
JournalMedical Physics
Volume31
Issue number12
Publication statusPublished - Dec 2004

Fingerprint

Dive into the research topics of 'Automatic phase determination for retrospectively gated cardiac CT'. Together they form a unique fingerprint.

Cite this