Abstract
Radical orchifunicolectomy has traditionally been the main clinical treatment for small testicular masses (STMs); however STMs represent a constantly increasing and often incidental finding. Since many of them result benign, a more conservative testis-sparing surgery was proposed, but it requires a preliminary differentiation between benign and malignant masses: this however remains challenging. Although common understanding in radiology and oncology is that perfusion patterns might provide a useful information about the type of masses, no guidelines or consensus is available for the differentiation of STMs. We propose to build a dictionary of relevant perfusion patterns, extracted using non-negative matrix factorization on pixel-wise time-intensity curves from contrast-enhanced ultrasound data. When data from a lesion are reconstructed using this dictionary, a vector containing the frequency of utilization of each pattern can be used as a tissue signature. Using this signature, a support vector machine classifier has been trained, and the cross validated accuracy reached 100% in our pilot cohort.
Original language | English |
---|---|
Title of host publication | ISBI 2019 - 2019 IEEE International Symposium on Biomedical Imaging |
Publisher | IEEE Computer Society |
Pages | 850-854 |
Number of pages | 5 |
Volume | 2019-April |
ISBN (Electronic) | 9781538636411 |
DOIs | |
Publication status | Published - 1 Apr 2019 |
Event | 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 - Venice, Italy Duration: 8 Apr 2019 → 11 Apr 2019 |
Conference
Conference | 16th IEEE International Symposium on Biomedical Imaging, ISBI 2019 |
---|---|
Country/Territory | Italy |
City | Venice |
Period | 8/04/2019 → 11/04/2019 |
Keywords
- Cancer
- CEUS
- Dictionary learning
- SVM
- Ultrasound non-negative matrix factorization