TY - JOUR
T1 - Ca2+/Calmodulin-Dependent protein kinase II delta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure
AU - Bossuyt, J
AU - Helmstadter, K
AU - Wu, X
AU - Clements-Jewery, H
AU - Haworth, R S
AU - Avkiran, M
AU - Martin, J L
AU - Pogwizd, S M
AU - Bers, D M
PY - 2008/3
Y1 - 2008/3
N2 - Cardiac hypertrophy and heart failure (HF) are associated with reactivation of fetal cardiac genes, and class II histone deacetylases (HDACs) (eg, HDAC5) have been strongly implicated in this process. We have shown previously that inositol trisphosphate, Ca2(+)/calmodulin-dependent protein kinase II ( CaMKII), and protein kinase ( PK)D are involved in HDAC5 phosphorylation and nuclear export in normal adult ventricular myocytes and also that CaMKII delta and inositol trisphosphate receptors are upregulated in HF. Here we tested whether, in our rabbit HF model, nucleocytoplasmic shuttling of HDAC5 was altered either at baseline or in response to endothelin-1, which would indicate HDAC5 phosphorylation and transcription effects. The fusion protein HDAC5 - green fluorescent protein (HDAC5-GFP) was more cytosolic in HF myocytes (F-nuc/F-cyto 3.3 +/- 0.3 vs 7.2 +/- 0.4 in control), and HDAC5 was more phosphorylated. Despite this baseline cytosolic HDAC5 shift, endothelin-1 produced more rapid HDAC5-GFP nuclear export in HF versus control myocytes. We also find that PKD and CaMKII delta(C) expression and activation state are increased in both rabbit and human HF. Inhibition of either CaMKII or PKD in HF myocytes partially restored the HDAC5-GFP F-nuc/F-cyto toward control, and simultaneous inhibition restored F-nuc/F-cyto to that in control myocytes. Moreover, adenovirus-mediated overexpression of PKD, CaMKII delta(B), or CaMKII delta(C) reduced baseline HDAC5 F-nuc/F-cyto in control myocytes (3.4 +/- 0.5, 3.8 +/- 0.5, and 5.2 +/- 0.5, respectively), approaching that seen in HF. We conclude that chronic upregulation and activation of inositol trisphosphate receptors, CaMKII, and PKD in HF shifts HDAC5 out of the nucleus, derepressing transcription of hypertrophic genes. This may directly contribute to the development and/or maintenance of HF
AB - Cardiac hypertrophy and heart failure (HF) are associated with reactivation of fetal cardiac genes, and class II histone deacetylases (HDACs) (eg, HDAC5) have been strongly implicated in this process. We have shown previously that inositol trisphosphate, Ca2(+)/calmodulin-dependent protein kinase II ( CaMKII), and protein kinase ( PK)D are involved in HDAC5 phosphorylation and nuclear export in normal adult ventricular myocytes and also that CaMKII delta and inositol trisphosphate receptors are upregulated in HF. Here we tested whether, in our rabbit HF model, nucleocytoplasmic shuttling of HDAC5 was altered either at baseline or in response to endothelin-1, which would indicate HDAC5 phosphorylation and transcription effects. The fusion protein HDAC5 - green fluorescent protein (HDAC5-GFP) was more cytosolic in HF myocytes (F-nuc/F-cyto 3.3 +/- 0.3 vs 7.2 +/- 0.4 in control), and HDAC5 was more phosphorylated. Despite this baseline cytosolic HDAC5 shift, endothelin-1 produced more rapid HDAC5-GFP nuclear export in HF versus control myocytes. We also find that PKD and CaMKII delta(C) expression and activation state are increased in both rabbit and human HF. Inhibition of either CaMKII or PKD in HF myocytes partially restored the HDAC5-GFP F-nuc/F-cyto toward control, and simultaneous inhibition restored F-nuc/F-cyto to that in control myocytes. Moreover, adenovirus-mediated overexpression of PKD, CaMKII delta(B), or CaMKII delta(C) reduced baseline HDAC5 F-nuc/F-cyto in control myocytes (3.4 +/- 0.5, 3.8 +/- 0.5, and 5.2 +/- 0.5, respectively), approaching that seen in HF. We conclude that chronic upregulation and activation of inositol trisphosphate receptors, CaMKII, and PKD in HF shifts HDAC5 out of the nucleus, derepressing transcription of hypertrophic genes. This may directly contribute to the development and/or maintenance of HF
U2 - 10.1161/CIRCRESAHA.107.169755
DO - 10.1161/CIRCRESAHA.107.169755
M3 - Article
VL - 102
SP - 695
EP - 702
JO - Circulation Research
JF - Circulation Research
IS - 6
ER -