Can Segmentation Models Be Trained with Fully Synthetically Generated Data?

Virginia Fernandez*, Walter Hugo Lopez Pinaya, Pedro Borges, Petru Daniel Tudosiu, Mark S. Graham, Tom Vercauteren, M. Jorge Cardoso

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

4 Citations (Scopus)

Abstract

In order to achieve good performance and generalisability, medical image segmentation models should be trained on sizeable datasets with sufficient variability. Due to ethics and governance restrictions, and the costs associated with labelling data, scientific development is often stifled, with models trained and tested on limited data. Data augmentation is often used to artificially increase the variability in the data distribution and improve model generalisability. Recent works have explored deep generative models for image synthesis, as such an approach would enable the generation of an effectively infinite amount of varied data, addressing the generalisability and data access problems. However, many proposed solutions limit the user’s control over what is generated. In this work, we propose brainSPADE, a model which combines a synthetic diffusion-based label generator with a semantic image generator. Our model can produce fully synthetic brain labels on-demand, with or without pathology of interest, and then generate a corresponding MRI image of an arbitrary guided style. Experiments show that brainSPADE synthetic data can be used to train segmentation models with performance comparable to that of models trained on real data.

Original languageEnglish
Title of host publicationSimulation and Synthesis in Medical Imaging - 7th International Workshop, SASHIMI 2022, Held in Conjunction with MICCAI 2022, Proceedings
EditorsCan Zhao, David Svoboda, Jelmer M. Wolterink, Maria Escobar
PublisherSpringer Science and Business Media Deutschland GmbH
Pages79-90
Number of pages12
ISBN (Print)9783031169793
DOIs
Publication statusPublished - 2022
Event7th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2022, held in conjunction with 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sept 202218 Sept 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13570 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference7th International Workshop on Simulation and Synthesis in Medical Imaging, SASHIMI 2022, held in conjunction with 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/202218/09/2022

Fingerprint

Dive into the research topics of 'Can Segmentation Models Be Trained with Fully Synthetically Generated Data?'. Together they form a unique fingerprint.

Cite this