Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining.

Cheryl D Waring, Beverley Jane Henning, Andrew John Smith, Bernado Nadal-Ginard, Daniele Torella, Georgina May Ellison

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)
65 Downloads (Pure)

Abstract

Intensity‐controlled (relative to VO2max) treadmill exercise training in adult rats results in the activation and ensuing differentiation of endogenous c‐kitpos cardiac stem/progenitor cells (eCSCs) into newly formed cardiomyocytes and capillaries. Whether these training‐induced adaptations persist following detraining is undetermined. Twelve male Wistar rats (~230 g) were exercised at 80–85% of their VO2max for 30 min day−1, 4 days week−1 for 4 weeks (TR; n = 6), followed by 4 weeks of detraining (DTR; n = 6). Twelve untrained rats acted as controls (CTRL). Exercise training significantly enhanced VO2max (11.34 mL kg−1 min−1) and wet heart weight (29%) above CTRL (P < 0.05). Echocardiography revealed that exercise training increased LV mass (~32%), posterior and septal wall thickness (~15%), ejection fraction and fractional shortening (~10%) compared to CTRL (P < 0.05). Cardiomyocyte diameter (17.9 ± 0.1 μm vs. 14.9 ± 0.6 μm), newly formed (BrdUpos/Ki67pos) cardiomyocytes (7.2 ± 1.3%/1.9 ± 0.7% vs. 0.2 ± 0.1%/0.1 ± 0.1%), total cardiomyocyte number (45.6 ± 0.6 × 106 vs. 42.5 ± 0.4 × 106), c‐kitpos eCSC number (884 ± 112 per 106 cardiomyocytes vs. 482 ± 132 per 106 cardiomyocytes), and capillary density (4123 ± 227 per mm2 vs. 2117 ± 118 per mm2) were significantly greater in the LV of trained animals (P < 0.05) than CTRL. Detraining removed the stimulus for c‐kitpos eCSC activation (640 ± 98 per 106 cardiomyocytes) and resultant cardiomyocyte hyperplasia (0.4 ± 0.3% BrdUpos/0.2 ± 0.2% Ki67pos cardiomyocytes). Capillary density (3673 ± 374 per mm2) and total myocyte number (44.7 ± 0.5 × 106) remained elevated following detraining, but cardiomyocyte hypertrophy (15.0 ± 0.4 μm) was lost, resulting in a reduction of anatomical (wall thickness ~4%; LV mass ~10% and cardiac mass ~8%, above CTRL) and functional (EF & FS ~2% above CTRL) parameters gained through exercise training. These findings demonstrate that cardiac adaptations, produced by 4 weeks of intensity‐controlled exercise training are lost after a similar period of detraining.
Original languageEnglish
Pages (from-to)1-11
JournalPhysiological Reports
Volume3
Issue number2
Early online date23 Feb 2015
DOIs
Publication statusPublished - Feb 2015

Fingerprint

Dive into the research topics of 'Cardiac adaptations from 4 weeks of intensity-controlled vigorous exercise are lost after a similar period of detraining.'. Together they form a unique fingerprint.

Cite this