TY - JOUR
T1 - Cartilage Oligomeric Matrix Protein Maintains the Contractile Phenotype of Vascular Smooth Muscle Cells by Interacting With alpha(7)beta(1) Integrin
AU - Wang, Li
AU - Zheng, Jingang
AU - Du, Yaoyao
AU - Huang, Yaqian
AU - Li, Jing
AU - Liu, Bo
AU - Liu, Chuan-ju
AU - Zhu, Yi
AU - Gao, Yuansheng
AU - Xu, Qingbo
AU - Kong, Wei
AU - Wang, Xian
PY - 2010/2
Y1 - 2010/2
N2 - Rational: Vascular smooth muscle cells (VSMCs) switching from a contractile/differentiated to a synthetic/dedifferentiated phenotype has an essential role in atherosclerosis, postangioplastic restenosis and hypertension. However, how normal VSMCs maintain the differentiated state is less understood.
Objective: We aimed to indentify the effect of cartilage oligomeric matrix protein (COMP), a normal vascular extracellular matrix, on modulation of VSMCs phenotype.
Methods and Results: We demonstrated that COMP was associated positively with the expression of VSMC differentiation marker genes during phenotype transition. Knockdown of COMP by small interfering (si) RNA favored dedifferentiation. Conversely, adenoviral overexpression of COMP markedly suppressed platelet-derived growth factor-BB-elicited VSMC dedifferentiation, characterized by altered VSMC morphology, actin fiber organization, focal adhesion assembly, and the expression of phenotype-dependent markers. Whereas alpha(7) integrin coimmunoprecipitated with COMP in normal rat VSMCs and vessels, neutralizing antibody or siRNA against alpha(7) integrin inhibited VSMC adhesion to COMP, which indicated that alpha(7)beta(1) integrin is a potential receptor for COMP. As well, blocking or interference by siRNA of alpha(7) integrin completely abolished the effect of COMP on conserving the contractile phenotype. In accordance, ectopic adenoviral overexpression of COMP greatly retarded VSMC phenotype switching, rescued contractility of carotid artery ring, and inhibited neointima formation in balloon-injured rats.
Conclusions: Our data suggest that COMP is essential for maintaining a VSMC contractile phenotype and the protective effects of COMP are mainly mediated through interaction with alpha(7)beta(1) integrin. Investigations to identify the factors affecting the expression and integrity of COMP may provide a novel therapeutic target for vascular disorders. (Circ Res. 2010;106:514-525.)
AB - Rational: Vascular smooth muscle cells (VSMCs) switching from a contractile/differentiated to a synthetic/dedifferentiated phenotype has an essential role in atherosclerosis, postangioplastic restenosis and hypertension. However, how normal VSMCs maintain the differentiated state is less understood.
Objective: We aimed to indentify the effect of cartilage oligomeric matrix protein (COMP), a normal vascular extracellular matrix, on modulation of VSMCs phenotype.
Methods and Results: We demonstrated that COMP was associated positively with the expression of VSMC differentiation marker genes during phenotype transition. Knockdown of COMP by small interfering (si) RNA favored dedifferentiation. Conversely, adenoviral overexpression of COMP markedly suppressed platelet-derived growth factor-BB-elicited VSMC dedifferentiation, characterized by altered VSMC morphology, actin fiber organization, focal adhesion assembly, and the expression of phenotype-dependent markers. Whereas alpha(7) integrin coimmunoprecipitated with COMP in normal rat VSMCs and vessels, neutralizing antibody or siRNA against alpha(7) integrin inhibited VSMC adhesion to COMP, which indicated that alpha(7)beta(1) integrin is a potential receptor for COMP. As well, blocking or interference by siRNA of alpha(7) integrin completely abolished the effect of COMP on conserving the contractile phenotype. In accordance, ectopic adenoviral overexpression of COMP greatly retarded VSMC phenotype switching, rescued contractility of carotid artery ring, and inhibited neointima formation in balloon-injured rats.
Conclusions: Our data suggest that COMP is essential for maintaining a VSMC contractile phenotype and the protective effects of COMP are mainly mediated through interaction with alpha(7)beta(1) integrin. Investigations to identify the factors affecting the expression and integrity of COMP may provide a novel therapeutic target for vascular disorders. (Circ Res. 2010;106:514-525.)
U2 - 10.1161/CIRCRESAHA.109.202762
DO - 10.1161/CIRCRESAHA.109.202762
M3 - Article
VL - 106
SP - 514
EP - 525
JO - Circulation Research
JF - Circulation Research
IS - 3
ER -