King's College London

Research portal

Chalcogenide-capped triiron clusters [Fe3(CO)9(μ3-E)2], [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) as proton-reduction catalysts

Research output: Contribution to journalArticle

Ahibur Rahaman, Shishir Ghosh, Sucharita Basak-Modi, Ahmed F. Abdel-Magied, Shariff E. Kabir, Matti Haukka, Michael G. Richmond, George Lisensky, Ebbe Nordlander, Graeme Hogarth

Original languageEnglish
Pages (from-to)213-222
Number of pages10
Early online date25 Oct 2018
Accepted/In press22 Oct 2018
E-pub ahead of print25 Oct 2018
Published1 Feb 2019


King's Authors


Chalcogenide-capped triiron clusters [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] and [Fe3(CO)7(μ3-E)2(μ-dppm)] (E = S, Se) have been examined as proton-reduction catalysts. Protonation studies show that [Fe3(CO)9(μ3-E)2] are unaffected by strong acids, mono-capped [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] react with HBF4.Et2O but changes in IR spectra are attributed to BF3 binding to the face-capping carbonyl, while bicapped [Fe3(CO)7(μ3-E)2(μ-dppm)] are protonated but in a process that is not catalytically important. DFT calculations are presented to support these protonation studies. Cyclic voltammetry shows that [Fe3(CO)9(μ3-Se)2] exhibits two reduction waves, and upon addition of strong acids, proton-reduction occurs at a range of potentials. Mono-chalcogenide clusters [Fe3(CO)7(μ3-CO)(μ3-E)(μ-dppm)] (E = S, Se) exhibit proton-reduction at ca.-1.85 (E = S) and -1.62 V (E = Se) in the presence of p-toluene sulfonic acid (p-TsOH). Bicapped [Fe3(CO)7(μ3-E)2(μ-dppm)] undergo quasi-reversible reductions at -1.55 (E = S) and -1.45 V (E = Se) and reduce p-TsOH to hydrogen but protonated species do not appear to be catalytically important. Current uptake is seen at the first reduction potential in each case showing that [Fe3(CO)7(μ3-E)2(μ-dppm)]- are catalytically active but a far greater response is seen at ca.-1.9 V being tentatively associated with reduction of [H2Fe3(CO)7(μ3-E)2(μ-dppm)]+. In general, selenide clusters reduce at slightly lower potentials than sulfide analogues and show slightly higher current uptake under comparable conditions.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454