King's College London

Research portal

Characterising the enzymatic profile of crude tentacle extracts from the South Atlantic jellyfish Olindias sambaquiensis (Cnidaria: Hydrozoa)

Research output: Contribution to journalArticlepeer-review

Paloma S. Knittel, Paul F. Long, Lucas Brammall, Antonio C. Marques, Michelle T. Almeida, Gabriel Padilla, Ana M. Moura-da-Silva

Original languageEnglish
Early online date8 May 2016
Accepted/In press30 Apr 2016
E-pub ahead of print8 May 2016


King's Authors


Jellyfish venoms are of medical and biotechnological importance, with toxins displaying antimicrobial, analgesic and anti-tumor activities. Although proteolytic enzymes have also been described, detailed characterisation of these proteins is scant in Olindias spp. High throughput mass spectrometry profiling of cnidarian venoms has become increasingly popular since the first description of the proteomic profile of putative toxins isolated from nematocysts of the hydrozoan jellyfish Olindias sambaquiensis describing the presence of orthologous enzymes as presented in venoms of advanced species as snakes. Rigorous bioinformatics analyses can aid functional annotation, but biochemical assays are prerequisite to unambiguously assign toxic function to a peptide or protein. Here we present results that experimentally confirm previously predicted proteomic analysis that crude venom extracts from tentacles of O. sambaquiensis are composed of polypeptides with metalloproteinase, serine proteinase and phospholipases A2 activities. Surprisingly, levels of serine proteinase and phospholipase A2 activities were comparable to those observed in venoms of Bothrops snakes which were used as positive controls in this study. Hence, these data offer new opportunities to explore serine proteinase and phospholipase A2 activities in the clinical sequelae following O. sambaquiensis envenomation, with future possible biopharmaceutical applications.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454