King's College London

Research portal

Chiral Transmission to Cationic Polycobaltocenes over Multiple Length Scales Using Anionic Surfactants

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Pages (from-to)7222-7231
JournalJournal of the American Chemical Society
Volume140
Issue number23
DOIs
Published30 May 2018

King's Authors

Abstract

Chiral polymers are ubiquitous in nature, and the self-assembly of chiral materials is a field of widespread interest. In this paper, we describe the formation of chiral metallopolymers based on poly(cobaltoceniumethylene) ([PCE]n+), which have been prepared through oxidation of poly(cobaltocenylethylene) (PCE) in the presence of enantiopure N-acyl-amino-acid-derived anionic surfactants, such as N-palmitoyl-l-alanine (C16-l-Ala) and N-palmitoyl-d-alanine (C16-d-Ala). It is postulated that the resulting metallopolymer complexes [PCE][C16-l/d-Ala]n contain close ionic contacts, and exhibit chirality through the axially chiral ethylenic CH2–CH2 bridges, leading to interaction of the chromophoric [CoCp2]+ units through chiral space. The steric influence of the long palmitoyl (C16) surfactant tail is key for the transmission of chirality to the polymer, and results in a brushlike amphiphilic macromolecular structure that also affords solubility in polar organic solvents (e.g., EtOH, THF). Upon dialysis of these solutions into water, the hydrophobic palmitoyl surfactant substituents aggregate and the complex assembles into superhelical ribbons with identifiable “handedness”, indicating the transmission of chirality from the molecular surfactant to the micrometer length scale, via the macromolecular complex.

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454