TY - JOUR
T1 - Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia
AU - Quantitative Cardiac Imaging Study Group
AU - Dewey, Marc
AU - Siebes, Maria
AU - Kachelrieß, Marc
AU - Kofoed, Klaus F
AU - Maurovich-Horvat, Pál
AU - Nikolaou, Konstantin
AU - Bai, Wenjia
AU - Kofler, Andreas
AU - Manka, Robert
AU - Kozerke, Sebastian
AU - Chiribiri, Amedeo
AU - Schaeffter, Tobias
AU - Michallek, Florian
AU - Bengel, Frank
AU - Nekolla, Stephan
AU - Knaapen, Paul
AU - Lubberink, Mark
AU - Senior, Roxy
AU - Tang, Meng-Xing
AU - Piek, Jan J
AU - van de Hoef, Tim
AU - Martens, Johannes
AU - Schreiber, Laura
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
AB - Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
UR - http://www.scopus.com/inward/record.url?scp=85086606165&partnerID=8YFLogxK
U2 - 10.1038/s41569-020-0341-8
DO - 10.1038/s41569-020-0341-8
M3 - Article
C2 - 32094693
SN - 1759-5002
VL - 17
SP - 427
EP - 450
JO - Nature Reviews Cardiology
JF - Nature Reviews Cardiology
IS - 7
ER -