King's College London

Research portal

Coarse graining of biochemical systems described by discrete stochastic dynamics

Research output: Contribution to journalArticlepeer-review

David Seiferth, Peter Sollich, Stefan Klumpp

Original languageEnglish
JournalPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics
Accepted/In press7 Dec 2020

Documents

King's Authors

Abstract

Many biological systems can be described by finite Markov models. A general method for sim- plifying master equations is presented that is based on merging adjacent states. The approach preserves the steady-state probability distribution and all steady-state fluxes except the one between the merged states. Different levels of coarse graining of the underlying microscopic dynamics can be obtained by iteration, with the result being independent of the order in which states are merged. A criterion for the optimal level of coarse graining or resolution of the process is proposed, via a trade-off between the simplicity of the coarse-grained model and the information loss relative to the original model. As a case study, the method is applied to the cycle kinetics of the molecular motor kinesin.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454