King's College London

Research portal

Co-culture of murine small intestine epithelial organoids with innate lymphoid cells

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
Article numbere63554
JournalJournal of visualized experiments : JoVE
Volume2022
Issue number181
DOIs
Accepted/In press22 Feb 2022
Published23 Mar 2022

Bibliographical note

Funding Information: E.R. acknowledges a Ph.D. fellowship from the Wellcome Trust (215027/Z/18/Z). G.M.J. acknowledges a Ph.D. fellowship from the Wellcome Trust (203757/Z/16/A). D.C. acknowledges a Ph.D. studentship from the NIHR GSTT BRC. J.F.N. acknowledges a Marie Skłodowska-Curie Fellowship, a King's Prize fellowship, an RCUK/UKRI Rutherford Fund fellowship (MR/R024812/1), and a Seed Award in Science from the Wellcome Trust (204394/Z/16/ Z). We also thank the BRC flow cytometry core team based at Guy's Hospital. Rorc(γt)-GfpTG C57BL/6 reporter mice were a generous gift from G. Eberl (Institut Pasteur, Paris, France). CD45.1 C57BL/6 mice were kindly given by T. Lawrence (King's College London, London) and P. Barral (King's College London, London). Funding Information: E.R. acknowledges a Ph.D. fellowship from the Wellcome Trust (215027/Z/18/Z). G.M.J. acknowledges a Ph.D. fellowship from the Wellcome Trust (203757/Z/16/A). D.C. acknowledges a Ph.D. studentship from the NIHR GSTT BRC. J.F.N. acknowledges a Marie Sk?odowska-Curie Fellowship, a King's Prize fellowship, an RCUK/UKRI Rutherford Fund fellowship (MR/R024812/1), and a Seed Award in Science from the Wellcome Trust (204394/Z/16/ Z). We also thank the BRC flow cytometry core team based at Guy's Hospital. Rorc(?t)-GfpTG C57BL/6 reporter mice were a generous gift from G. Eberl (Institut Pasteur, Paris, France). CD45.1 C57BL/6 mice were kindly given by T. Lawrence (King's College London, London) and P. Barral (King's College London, London). Publisher Copyright: © 2022 JoVE Creative Commons Attribution-NonCommercial 3.0 License.

Documents

King's Authors

Abstract

Complex co-cultures of organoids with immune cells provide a versatile tool for interrogating the bi-directional interactions that underpin the delicate balance of mucosal homeostasis. These 3D, multi-cellular systems offer a reductionist model for addressing multi-factorial diseases and resolving technical difficulties that arise when studying rare cell types such as tissue-resident innate lymphoid cells (ILCs). This article describes a murine system that combines small intestine organoids and small intestine lamina propria derived helper-like type-1 ILCs (ILC1s), which can be readily extended to other ILC or immune populations. ILCs are a tissue-resident population that is particularly enriched in the mucosa, where they promote homeostasis and rapidly respond to damage or infection. Organoid co-cultures with ILCs have already begun shedding light on new epithelial-immune signaling modules in the gut, revealing how different ILC subsets impact intestinal epithelial barrier integrity and regeneration. This protocol will enable further investigations into reciprocal interactions between epithelial and immune cells, which hold the potential to provide new insights into the mechanisms of mucosal homeostasis and inflammation.

Download statistics

No data available

View graph of relations

© 2020 King's College London | Strand | London WC2R 2LS | England | United Kingdom | Tel +44 (0)20 7836 5454